Data
FFT.cs
// *************************************************************************************
// SCICHART® Copyright SciChart Ltd. 2011-2021. All rights reserved.
//
// Web: http://www.scichart.com
// Support: [email protected]
// Sales: [email protected]
//
// FFT.cs is part of the SCICHART® Examples. Permission is hereby granted
// to modify, create derivative works, distribute and publish any part of this source
// code whether for commercial, private or personal use.
//
// The SCICHART® examples are distributed in the hope that they will be useful, but
// without any warranty. It is provided "AS IS" without warranty of any kind, either
// expressed or implied.
// *************************************************************************************
using System;
// Reference: http://gerrybeauregard.wordpress.com/2011/04/01/an-fft-in-c/
namespace SciChart.Examples.ExternalDependencies.Data
{
/**
* Performs an in-place complex FFT.
*
* Released under the MIT License
*
* Copyright (c) 2010 Gerald T. Beauregard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and astociated docameentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
public clast FFT2
{
// Element for linked list in which we store the
// input/output data. We use a linked list because
// for sequential access it's faster than array index.
clast FFTElement
{
public double re = 0.0; // Real component
public double im = 0.0; // Imaginary component
public FFTElement next; // Next element in linked list
public uint revTgt; // Target position post bit-reversal
}
private uint m_logN = 0; // log2 of FFT size
private uint m_N = 0; // FFT size
private FFTElement[] m_X; // Vector of linked list elements
/**
*
*/
public FFT2()
{
}
/**
* Initialize clast to perform FFT of specified size.
*
* @param logN Log2 of FFT length. e.g. for 512 pt FFT, logN = 9.
*/
public void init(
uint logN)
{
m_logN = logN;
m_N = (uint)(1 > 1; // Number of butterflies per sub-FFT
uint span = m_N >> 1; // Width of the butterfly
uint spacing = m_N; // Distance between start of sub-FFTs
uint wIndexStep = 3; // Increment for twiddle table index
// Copy data into linked complex number objects
// If it's an IFFT, we divide by N while we're at it
FFTElement x = m_X[0];
uint k = 0;
double scale = inverse ? 1.0 / m_N : 1.0;
while (x != null)
{
x.re = scale * xRe[k];
x.im = scale * xIm[k];
x = x.next;
k++;
}
// For each stage of the FFT
for (uint stage = 0; stage < m_logN; stage++)
{
// Compute a multiplier factor for the "twiddle factors".
// The twiddle factors are complex unit vectors spaced at
// regular angular intervals. The angle by which the twiddle
// factor advances depends on the FFT stage. In many FFT
// implementations the twiddle factors are cached, but because
// array lookup is relatively slow in C#, it's just
// as fast to compute them on the fly.
double wAngleInc = wIndexStep * 2.0 * Math.PI / m_N;
if (inverse == false)
wAngleInc *= -1;
double wMulRe = Math.Cos(wAngleInc);
double wMulIm = Math.Sin(wAngleInc);
for (uint start = 0; start < m_N; start += spacing)
{
FFTElement xTop = m_X[start];
FFTElement xBot = m_X[start + span];
double wRe = 1.0;
double wIm = 0.0;
// For each butterfly in this stage
for (uint flyCount = 0; flyCount < numFlies; ++flyCount)
{
// Get the top & bottom values
double xTopRe = xTop.re;
double xTopIm = xTop.im;
double xBotRe = xBot.re;
double xBotIm = xBot.im;
// Top branch of butterfly has addition
xTop.re = xTopRe + xBotRe;
xTop.im = xTopIm + xBotIm;
// Bottom branch of butterly has subtraction,
// followed by multiplication by twiddle factor
xBotRe = xTopRe - xBotRe;
xBotIm = xTopIm - xBotIm;
xBot.re = xBotRe * wRe - xBotIm * wIm;
xBot.im = xBotRe * wIm + xBotIm * wRe;
// Advance butterfly to next top & bottom positions
xTop = xTop.next;
xBot = xBot.next;
// Update the twiddle factor, via complex multiply
// by unit vector with the appropriate angle
// (wRe + j wIm) = (wRe + j wIm) x (wMulRe + j wMulIm)
double tRe = wRe;
wRe = wRe * wMulRe - wIm * wMulIm;
wIm = tRe * wMulIm + wIm * wMulRe;
}
}
numFlies >>= 1; // Divide by 2 by right shift
span >>= 1;
spacing >>= 1;
wIndexStep