''' r_table2scatter.py - R based plots and stats ============================================ :Author: Andreas Heger :Release: $Id$ :Date: |today| :Tags: Python Purpose ------- This script reads a table from a file or stdin. It can compute various stats (correlations, ...) and/or plot the data using R. Usage ----- Example:: python r_table2scatter.py --help Type:: python r_table2scatter.py --help for command line help. Command line options -------------------- ''' import os import sys import re import tempfile import math import code import CGAT.Experiment as E import CGAT.MatlabTools as MatlabTools import numpy import CGAT.Stats as Stats from rpy2.robjects import r as R def readTable(lines, assign, separator="\t", numeric_type=numpy.float, take_columns="all", headers=True, row_names=None, colours=None, ): """read a matrix. There probably is a routine for this in Numpy, which I haven't found yet. The advantage of using rpy's mechanism is to allow for missing values. row_names: column with row names """ # now import R as stdin has been read. take = take_columns handle, name = tempfile.mkstemp() os.close(handle) if take_columns == "all": num_cols = len(lines[0][:-1].split("\t")) take = list(range(0, num_cols)) elif take_columns == "all-but-first": num_cols = len(lines[0][:-1].split("\t")) take = list(range(1, num_cols)) outfile = IOTools.openFile(name, "w") c = [] # delete columns with colour information/legend to_delete = [] if row_names is not None: legend = [] if take_columns == "all": to_delete.append(row_names) else: legend = None if colours is not None: if take_columns == "all": to_delete.append(colours) to_delete.sort() to_delete.reverse() for x in to_delete: del take[x] # get column headers if headers: headers = lines[0][:-1].split("\t") headers = [headers[x] for x in take] del lines[0] for l in lines: data = [x.strip() for x in l[:-1].split("\t")] if not data or not [x for x in data if x != ""]: continue outfile.write("\t".join([data[x] for x in take]) + "\n") if row_names is not None: legend.append(data[row_names]) if colours is not None: c.append(data[colours]) outfile.close() # rpy.set_default_mode(rpy.NO_CONVERSION) # note that the conversion # is not perfect. Some missing values are assigned to "nan", while # some are -2147483648. They seem to treated correctly, though, # within R, but note that when computing something like sum(), the # result in python after conversion might be -2147483648. if headers: matrix = R("""%s <- read.table( '%s', na.string = c("NA", "na", 'nan', 'NaN'), col.names=c('%s'), sep="\t" )""" % (assign, name, "','".join(headers))) else: matrix = R( """%s <- read.table( '%s', na.string = c("NA", "na", 'nan', 'NaN'), col.names=headers, sep="\t" )""" % (assign, name)) # rpy.set_default_mode(rpy.BASIC_CONVERSION) os.remove(name) return matrix, headers, c, legend def writeMatrix(file, matrix, separator="\t", headers=[], format="%f"): """write a matrix to file. if headers are given, add them to columns and rows. """ if headers: file.write("\t" + "\t".join(headers) + "\n") nrows, ncols = matrix.shape for x in range(nrows): if headers: file.write(headers[x] + "\t") file.write( "\t".join([format % x for x in matrix[x]]) + "\n") def FuncScatterDiagonal(data): R.points(data) R.abline(0, 1) def main(argv=None): if argv is None: argv = sys.argv parser = E.OptionParser( version="%prog version: $Id: r_table2scatter.py 2782 2009-09-10 11:40:29Z andreas $") parser.add_option("-c", "--columns", dest="columns", type="string", help="columns to take from table. Choices are 'all', 'all-but-first' or a ','-separated list of columns.") parser.add_option("--logscale", dest="logscale", type="string", help="log-transform one or both axes [default=%Default].") parser.add_option("-a", "--hardcopy", dest="hardcopy", type="string", help="write hardcopy to file [default=%default].", metavar="FILE") parser.add_option("-f", "--file", dest="input_filename", type="string", help="filename with table data [default=%default].", metavar="FILE") parser.add_option("-2", "--file2", dest="input_filename2", type="string", help="additional data file [default=%default].", metavar="FILE") parser.add_option("-s", "--stats", dest="statistics", type="choice", choices=("correlation", "spearman", "pearson", "count"), help="statistical quantities to compute [default=%default]", action="append") parser.add_option("-p", "--plot", dest="plot", type="choice", choices=("scatter", "pairs", "panel", "bar", "bar-stacked", "bar-besides", "1_vs_x", "matched", "boxplot", "scatter+marginal", "scatter-regression"), help="plots to plot [default=%default]", action="append") parser.add_option("-t", "--threshold", dest="threshold", type="float", help="min threshold to use for counting method [default=%default].") parser.add_option("-o", "--colours", dest="colours", type="int", help="column with colour information [default=%default].") parser.add_option("-l", "--plot-labels", dest="labels", type="string", help="column labels for x and y in matched plots [default=%default].") parser.add_option("-d", "--add-diagonal", dest="add_diagonal", action="store_true", help="add diagonal to plot [default=%default].") parser.add_option("-e", "--plot-legend", dest="legend", type="int", help="column with legend [default=%default].") parser.add_option("-r", "--options", dest="r_options", type="string", help="R plotting options [default=%default].") parser.add_option("--format", dest="format", type="choice", choices=("full", "sparse"), help="output format [default=%default].") parser.add_option("--title", dest="title", type="string", help="""plot title [default=%default].""") parser.add_option("", "--xrange", dest="xrange", type="string", help="x viewing range of plot [default=%default].") parser.add_option("", "--yrange", dest="yrange", type="string", help="y viewing range of plot[default=%default].") parser.add_option("--allow-empty-file", dest="fail_on_empty", action="store_false", help="do not fail on empty input [default=%default].") parser.add_option("--fail-on-empty", dest="fail_on_empty", action="store_true", help="fail on empty input [default=%default].") parser.set_defaults( hardcopy=None, input_filename="", input_filename2=None, columns="all", logscale=None, statistics=[], plot=[], threshold=0.0, labels="x,y", colours=None, diagonal=False, legend=None, title=None, xrange=None, yrange=None, r_options="", fail_on_empty=True, format="full") (options, args) = E.Start(parser) if len(args) == 1 and not options.input_filename: options.input_filename = args[0] if options.columns not in ("all", "all-but-first"): options.columns = [int(x) - 1 for x in options.columns.split(",")] if options.colours: options.colours -= 1 if options.legend: options.legend -= 1 table = {} headers = [] # read data matrix if options.input_filename: lines = IOTools.openFile(options.input_filename, "r").readlines() else: # note: this will not work for interactive viewing, but # creating hardcopy plots works. lines = sys.stdin.readlines() lines = [x for x in lines if x[0] != "#"] if len(lines) == 0: if options.fail_on_empty: raise IOError("no input") E.warn("empty input") E.Stop() return matrix, headers, colours, legend = readTable(lines, "matrix", take_columns=options.columns, headers=True, colours=options.colours, row_names=options.legend) if options.input_filename2: # read another matrix (should be of the same format. matrix2, headers2, colours2, legend2 = readTable( lines, "matrix2", take_columns=options.columns, headers=True, colours=options.colours, row_names=options.legend) R.assign("headers", headers) ndata = R("""length( matrix[,1] )""")[0] if options.loglevel >= 1: options.stdlog.write("# read matrix: %ix%i\n" % (len(headers), ndata)) if colours: R.assign("colours", colours) for method in options.statistics: if method == "correlation": cor = R.cor(matrix, use="pairwise.complete.obs") writeMatrix(sys.stdout, cor, headers=headers, format="%5.2f") elif method == "pearson": options.stdout.write("\t".join(("var1", "var2", "coeff", "passed", "pvalue", "n", "method", "alternative")) + "\n") for x in range(len(headers) - 1): for y in range(x + 1, len(headers)): try: result = R( """cor.test( matrix[,%i], matrix[,%i] )""" % (x + 1, y + 1)) except rpy.RPyException as msg: E.warn("correlation not computed for columns %i(%s) and %i(%s): %s" % ( x, headers[x], y, headers[y], msg)) options.stdout.write("%s\t%s\t%s\t%s\t%s\t%i\t%s\t%s\n" % (headers[x], headers[y], "na", "na", "na", 0, "na", "na")) else: options.stdout.write( "%s\t%s\t%6.4f\t%s\t%e\t%i\t%s\t%s\n" % (headers[x], headers[y], result.rx2('estimate').rx2( 'cor')[0], Stats.getSignificance( float(result.rx2('p.value')[0])), result.rx2('p.value')[0], result.rx2('parameter').rx2( 'df')[0], result.rx2('method')[0], result.rx2('alternative')[0])) elif method == "spearman": options.stdout.write("\t".join(("var1", "var2", "coeff", "passed", "pvalue", "method", "alternative")) + "\n") for x in range(len(headers) - 1): for y in range(x + 1, len(headers)): result = R( """cor.test( matrix[,%i], matrix[,%i], method='spearman')""" % (x + 1, y + 1)) options.stdout.write( "%s\t%s\t%6.4f\t%s\t%e\t%i\t%s\t%s\n" % (headers[x], headers[y], result['estimate']['rho'], Stats.getSignificance(float(result['p.value'])), result['p.value'], result['parameter']['df'], result['method'], result['alternative'])) elif method == "count": # number of shared elements > threshold m, r, c = MatlabTools.ReadMatrix(open(options.input_filename, "r"), take=options.columns, headers=True) mask = numpy.greater(m, options.threshold) counts = numpy.dot(numpy.transpose(mask), mask) writeMatrix(options.stdout, counts, headers=c, format="%i") if options.plot: # remove columns that are completely empty if "pairs" in options.plot: colsums = R('''colSums( is.na(matrix ))''') take = [x for x in range(len(colsums)) if colsums[x] != ndata] if take: E.warn("removing empty columns %s before plotting" % str(take)) matrix = R.subset(matrix, select=[x + 1 for x in take]) R.assign("""matrix""", matrix) headers = [headers[x] for x in take] if legend: legend = [headers[x] for x in take] if options.r_options: extra_options = ", %s" % options.r_options else: extra_options = "" if options.legend is not None and len(legend): extra_options += ", legend=c('%s')" % "','".join(legend) if options.labels: xlabel, ylabel = options.labels.split(",") extra_options += ", xlab='%s', ylab='%s'" % (xlabel, ylabel) else: xlabel, ylabel = "", "" if options.colours: extra_options += ", col=colours" if options.logscale: extra_options += ", log='%s'" % options.logscale if options.xrange: extra_options += ", xlim=c(%f,%f)" % tuple( map(float, options.xrange.split(","))) if options.yrange: extra_options += ", ylim=c(%f,%f)" % tuple( map(float, options.yrange.split(","))) if options.hardcopy: if options.hardcopy.endswith(".eps"): R.postscript(options.hardcopy) elif options.hardcopy.endswith(".png"): R.png(options.hardcopy, width=1024, height=768, type="cairo") elif options.hardcopy.endswith(".jpg"): R.jpg(options.hardcopy, width=1024, height=768, type="cairo") for method in options.plot: if ndata < 100: point_size = "1" pch = "o" elif ndata < 1000: point_size = "1" pch = "o" else: point_size = "0.5" pch = "." if method == "scatter": R("""plot( matrix[,1], matrix[,2], cex=%s, pch="o" %s)""" % ( point_size, extra_options)) if method == "scatter-regression": R("""plot( matrix[,1], matrix[,2], cex=%s, pch="o" %s)""" % ( point_size, extra_options)) dat = R( """dat <- data.frame(x = matrix[,1], y = matrix[,2])""") R( """new <- data.frame(x = seq( min(matrix[,1]), max(matrix[,1]), (max(matrix[,1]) - min(matrix[,1])) / 100))""") mod = R("""mod <- lm( y ~ x, dat)""") R("""predict(mod, new, se.fit = TRUE)""") R("""pred.w.plim <- predict(mod, new, interval="prediction")""") R("""pred.w.clim <- predict(mod, new, interval="confidence")""") R( """matpoints(new$x,cbind(pred.w.clim, pred.w.plim[,-1]), lty=c(1,2,2,3,3), type="l")""") R.mtext( "y = %f * x + %f, r=%6.4f, n=%i" % (mod["coefficients"]["x"], mod["coefficients"][ "(Intercept)"], R("""cor( dat )[2]"""), ndata), 3, cex=1.0) elif method == "pairs": if options.add_diagonal: R( """panel.hist <- function( x,y,... ) { points(x,y,...); abline(0,1); }""") else: R( """panel.hist <- function( x,y,... ) { points(x,y,...); }""") # There used to be a argument na_action="na.omit", but # removed this as there appeared error messages saying # "na.action is not a graphical parameter" and the # plots showed occasionally the wrong scale. # cex=point_size also caused trouble (error message: # "X11 used font size 8 when 2 was requested" or # similar) if options.colours: R.pairs(matrix, pch=pch, col=colours, main=options.title, panel="panel.hist", labels=headers, cex_labels=2.0) else: R.pairs(matrix, pch=pch, panel="panel.hist", main=options.title, labels=headers, cex_labels=2.0) elif method == "boxplot": extra_options += ",main='%s'" % options.title # set vertical orientation if max([len(x) for x in headers]) > 40 / len(headers): # remove xlabel: extra_options = re.sub(", xlab='[^']+'", "", extra_options) extra_options += ", names.arg=headers, las=2" R( """op <- par(mar=c(11,4,4,2))""") # the 10 allows the names.arg below the barplot R("""boxplot( matrix %s)""" % extra_options) elif method == "bar" or method == "bar-stacked": if not options.colours: extra_options += ", col=rainbow(5)" # set vertical orientation if max([len(x) for x in headers]) > 40 / len(headers): # remove xlabel: extra_options = re.sub(", xlab='[^']+'", "", extra_options) extra_options += ", names.arg=headers, las=2" R( """op <- par(mar=c(11,4,4,2))""") # the 10 allows the names.arg below the barplot R("""barplot(as.matrix(matrix), %s)""" % extra_options) elif method == "bar-besides": if not options.colours: extra_options += ", col=rainbow(%i)" % ndata # set vertical orientation if max([len(x) for x in headers]) > 40 / len(headers): # remove xlabel: extra_options = re.sub(", xlab='[^']+'", "", extra_options) extra_options += ", names.arg=headers, las=2" R( """op <- par(mar=c(11,4,4,2))""") # the 10 allows the names.arg below the barplot R("""barplot(as.matrix(matrix), beside=TRUE %s)""" % extra_options) elif method == "scatter+marginal": if options.title: # set the size of the outer margins - the title needs to be added at the end # after plots have been created R.par(oma=R.c(0, 0, 4, 0)) R("""matrix""") R(""" x <- matrix[,1]; y <- matrix[,2]; xhist <- hist(x, breaks=20, plot=FALSE); yhist <- hist(y, breaks=20, plot=FALSE); top <- max(c(xhist$counts, yhist$counts)); nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), respect=TRUE ); par(mar=c(3,3,1,1)) ; plot(x, y, cex=%s, pch="o" %s) ; par(mar=c(0,3,1,1)) ; barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0 ) ; par(mar=c(3,0,1,1)) ; title(main='%s'); barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE ) ; title(main='%s'); """ % (point_size, extra_options, xlabel, ylabel)) if options.title: R.mtext(options.title, 3, outer=True, line=1, cex=1.5) elif method in ("panel", "1_vs_x", "matched"): if method == "panel": pairs = [] for x in range(len(headers) - 1): for y in range(x + 1, len(headers)): pairs.append((x, y)) elif method == "1_vs_x": pairs = [] for x in range(1, len(headers)): pairs.append((0, x)) # print matching columns elif method == "matched": pairs = [] for x in range(len(headers) - 1): for y in range(x + 1, len(headers)): if headers[x] == headers[y]: pairs.append((x, y)) break w = int(math.ceil(math.sqrt(len(pairs)))) h = int(math.ceil(float(len(pairs)) / w)) PosInf = 1e300000 NegInf = -1e300000 xlabel, ylabel = options.labels.split(",") R("""layout(matrix(seq(1,%i), %i, %i, byrow = TRUE))""" % (w * h, w, h)) for a, b in pairs: new_matrix = [x for x in zip( list(matrix[a].values())[0], list(matrix[b].values())[0]) if x[0] not in (float("nan"), PosInf, NegInf) and x[1] not in (float("nan"), PosInf, NegInf)] try: R("""plot(matrix[,%i], matrix[,%i], main='%s versus %s', cex=0.5, pch=".", xlab='%s', ylab='%s' )""" % ( a + 1, b + 1, headers[b], headers[a], xlabel, ylabel)) except rpy.RException as msg: print("could not plot %s versus %s: %s" % (headers[b], headers[a], msg)) if options.hardcopy: R['dev.off']() E.info("matrix added as >matrix< in R.") if not options.hardcopy: if options.input_filename: interpreter = code.InteractiveConsole(globals()) interpreter.interact() else: E.info( "can not start new interactive session as input has come from stdin.") E.Stop() if __name__ == "__main__": main()