from ctypes import c_uint, byref
from django.contrib.gis.geos.geometry import GEOSGeometry
from django.contrib.gis.geos.libgeos import get_pointer_arr, GEOM_PTR
from django.contrib.gis.geos.linestring import LinearRing
from django.contrib.gis.geos import prototypes as capi
from django.utils import six
from django.utils.six.moves import xrange

class Polygon(GEOSGeometry):
    _minlength = 1

    def __init__(self, *args, **kwargs):
        Initializes on an exterior ring and a sequence of holes (both
        instances may be either LinearRing instances, or a tuple/list
        that may be constructed into a LinearRing).

        Examples of initialization, where shell, hole1, and hole2 are
        valid LinearRing geometries:
        >>> poly = Polygon(shell, hole1, hole2)
        >>> poly = Polygon(shell, (hole1, hole2))

        Example where a tuple parameters are used:
        >>> poly = Polygon(((0, 0), (0, 10), (10, 10), (0, 10), (0, 0)),
                           ((4, 4), (4, 6), (6, 6), (6, 4), (4, 4)))
        if not args:
            raise TypeError('Must provide at least one LinearRing, or a tuple, to initialize a Polygon.')

        # Getting the ext_ring and init_holes parameters from the argument list
        ext_ring = args[0]
        init_holes = args[1:]
        n_holes = len(init_holes)

        # If initialized as Polygon(shell, (LinearRing, LinearRing)) [for backward-compatibility]
        if n_holes == 1 and isinstance(init_holes[0], (tuple, list)):
            if len(init_holes[0]) == 0:
                init_holes  = ()
                n_holes     = 0
            elif isinstance(init_holes[0][0], LinearRing):
                init_holes  = init_holes[0]
                n_holes     = len(init_holes)

        polygon = self._create_polygon(n_holes + 1, (ext_ring,) + init_holes)
        super(Polygon, self).__init__(polygon, **kwargs)

    def __iter__(self):
        "Iterates over each ring in the polygon."
        for i in xrange(len(self)):
            yield self[i]

    def __len__(self):
        "Returns the number of rings in this Polygon."
        return self.num_interior_rings + 1

    def from_bbox(cls, bbox):
        "Constructs a Polygon from a bounding box (4-tuple)."
        x0, y0, x1, y1 = bbox
        for z in bbox:
            if not isinstance(z, six.integer_types + (float,)):
                return GEOSGeometry('POLYGON((%s %s, %s %s, %s %s, %s %s, %s %s))' %
                                    (x0, y0, x0, y1, x1, y1, x1, y0, x0, y0))
        return Polygon(((x0, y0), (x0, y1), (x1, y1), (x1, y0), (x0, y0)))

    ### These routines are needed for list-like operation w/ListMixin ###
    def _create_polygon(self, length, items):
        # Instantiate LinearRing objects if necessary, but don't clone them yet
        # _construct_ring will throw a TypeError if a parameter isn't a valid ring
        # If we cloned the pointers here, we wouldn't be able to clean up
        # in case of error.
        rings = []
        for r in items:
            if isinstance(r, GEOM_PTR):

        shell = self._clone(rings.pop(0))

        n_holes = length - 1
        if n_holes:
            holes = get_pointer_arr(n_holes)
            for i, r in enumerate(rings):
                holes[i] = self._clone(r)
                holes_param = byref(holes)
            holes_param = None

        return capi.create_polygon(shell, holes_param, c_uint(n_holes))

    def _clone(self, g):
        if isinstance(g, GEOM_PTR):
            return capi.geom_clone(g)
            return capi.geom_clone(g.ptr)

    def _construct_ring(self, param, msg='Parameter must be a sequence of LinearRings or objects that can initialize to LinearRings'):
        "Helper routine for trying to construct a ring from the given parameter."
        if isinstance(param, LinearRing): return param
            ring = LinearRing(param)
            return ring
        except TypeError:
            raise TypeError(msg)

    def _set_list(self, length, items):
        # Getting the current pointer, replacing with the newly constructed
        # geometry, and destroying the old geometry.
        prev_ptr = self.ptr
        srid = self.srid
        self.ptr = self._create_polygon(length, items)
        if srid: self.srid = srid

    def _get_single_internal(self, index):
        Returns the ring at the specified index.  The first index, 0, will
        always return the exterior ring.  Indices > 0 will return the
        interior ring at the given index (e.g., poly[1] and poly[2] would
        return the first and second interior ring, respectively).

        CAREFUL: Internal/External are not the same as Interior/Exterior!
        _get_single_internal returns a pointer from the existing geometries for use
        internally by the object's methods.  _get_single_external returns a clone
        of the same geometry for use by external code.
        if index == 0:
            return capi.get_extring(self.ptr)
            # Getting the interior ring, have to subtract 1 from the index.
            return capi.get_intring(self.ptr, index-1)

    def _get_single_external(self, index):
        return GEOSGeometry(capi.geom_clone(self._get_single_internal(index)), srid=self.srid)

    _set_single = GEOSGeometry._set_single_rebuild
    _assign_extended_slice = GEOSGeometry._assign_extended_slice_rebuild

    #### Polygon Properties ####
    def num_interior_rings(self):
        "Returns the number of interior rings."
        # Getting the number of rings
        return capi.get_nrings(self.ptr)

    def _get_ext_ring(self):
        "Gets the exterior ring of the Polygon."
        return self[0]

    def _set_ext_ring(self, ring):
        "Sets the exterior ring of the Polygon."
        self[0] = ring

    # Properties for the exterior ring/shell.
    exterior_ring = property(_get_ext_ring, _set_ext_ring)
    shell = exterior_ring

    def tuple(self):
        "Gets the tuple for each ring in this Polygon."
        return tuple([self[i].tuple for i in xrange(len(self))])
    coords = tuple

    def kml(self):
        "Returns the KML representation of this Polygon."
        inner_kml = ''.join(["<innerBoundaryIs>%s</innerBoundaryIs>" % self[i+1].kml
                             for i in xrange(self.num_interior_rings)])
        return "<Polygon><outerBoundaryIs>%s</outerBoundaryIs>%s</Polygon>" % (self[0].kml, inner_kml)