The OGRGeometry is a wrapper for using the OGR Geometry class
 (see http://www.gdal.org/ogr/classOGRGeometry.html).  OGRGeometry
 may be instantiated when reading geometries from OGR Data Sources
 (e.g. SHP files), or when given OGC WKT (a string).

 While the 'full' API is not present yet, the API is "pythonic" unlike
 the traditional and "next-generation" OGR Python bindings.  One major
 advantage OGR Geometries have over their GEOS counterparts is support
 for spatial reference systems and their transformation.

  >>> from django.contrib.gis.gdal import OGRGeometry, OGRGeomType, SpatialReference
  >>> wkt1, wkt2 = 'POINT(-90 30)', 'POLYGON((0 0, 5 0, 5 5, 0 5)'
  >>> pnt = OGRGeometry(wkt1)
  >>> print(pnt)
  POINT (-90 30)
  >>> mpnt = OGRGeometry(OGRGeomType('MultiPoint'), SpatialReference('WGS84'))
  >>> mpnt.add(wkt1)
  >>> mpnt.add(wkt1)
  >>> print(mpnt)
  MULTIPOINT (-90 30,-90 30)
  >>> print(mpnt.srs.name)
  WGS 84
  >>> print(mpnt.srs.proj)
  +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs
  >>> mpnt.transform_to(SpatialReference('NAD27'))
  >>> print(mpnt.proj)
  +proj=longlat +ellps=clrk66 +datum=NAD27 +no_defs
  >>> print(mpnt)
  MULTIPOINT (-89.999930378602485 29.999797886557641,-89.999930378602485 29.999797886557641)

  The OGRGeomType class is to make it easy to specify an OGR geometry type:
  >>> from django.contrib.gis.gdal import OGRGeomType
  >>> gt1 = OGRGeomType(3) # Using an integer for the type
  >>> gt2 = OGRGeomType('Polygon') # Using a string
  >>> gt3 = OGRGeomType('POLYGON') # It's case-insensitive
  >>> print(gt1 == 3, gt1 == 'Polygon') # Equivalence works w/non-OGRGeomType objects
  True True
import sys
from binascii import a2b_hex, b2a_hex
from ctypes import byref, c_char_p, c_double, c_ubyte, c_void_p, string_at

from django.contrib.gis.gdal.base import GDALBase
from django.contrib.gis.gdal.envelope import Envelope, OGREnvelope
from django.contrib.gis.gdal.error import (
    GDALException, OGRIndexError, SRSException,
from django.contrib.gis.gdal.geomtype import OGRGeomType
from django.contrib.gis.gdal.prototypes import geom as capi, srs as srs_api
from django.contrib.gis.gdal.srs import CoordTransform, SpatialReference
from django.contrib.gis.geometry.regex import hex_regex, json_regex, wkt_regex
from django.utils import six
from django.utils.six.moves import range

# For more information, see the OGR C API source code:
#  http://www.gdal.org/ogr/ogr__api_8h.html
# The OGR_G_* routines are relevant here.

class OGRGeometry(GDALBase):
    "Generally encapsulates an OGR geometry."

    def __init__(self, geom_input, srs=None):
        "Initializes Geometry on either WKT or an OGR pointer as input."

        str_instance = isinstance(geom_input, six.string_types)

        # If HEX, unpack input to a binary buffer.
        if str_instance and hex_regex.match(geom_input):
            geom_input = six.memoryview(a2b_hex(geom_input.upper().encode()))
            str_instance = False

        # Constructing the geometry,
        if str_instance:
            wkt_m = wkt_regex.match(geom_input)
            json_m = json_regex.match(geom_input)
            if wkt_m:
                if wkt_m.group('srid'):
                    # If there's EWKT, set the SRS w/value of the SRID.
                    srs = int(wkt_m.group('srid'))
                if wkt_m.group('type').upper() == 'LINEARRING':
                    # OGR_G_CreateFromWkt doesn't work with LINEARRING WKT.
                    #  See http://trac.osgeo.org/gdal/ticket/1992.
                    g = capi.create_geom(OGRGeomType(wkt_m.group('type')).num)
                    capi.import_wkt(g, byref(c_char_p(wkt_m.group('wkt').encode())))
                    g = capi.from_wkt(byref(c_char_p(wkt_m.group('wkt').encode())), None, byref(c_void_p()))
            elif json_m:
                g = capi.from_json(geom_input.encode())
                # Seeing if the input is a valid short-hand string
                # (e.g., 'Point', 'POLYGON').
                g = capi.create_geom(OGRGeomType(geom_input).num)
        elif isinstance(geom_input, six.memoryview):
            # WKB was passed in
            g = capi.from_wkb(bytes(geom_input), None, byref(c_void_p()), len(geom_input))
        elif isinstance(geom_input, OGRGeomType):
            # OGRGeomType was passed in, an empty geometry will be created.
            g = capi.create_geom(geom_input.num)
        elif isinstance(geom_input, self.ptr_type):
            # OGR pointer (c_void_p) was the input.
            g = geom_input
            raise GDALException('Invalid input type for OGR Geometry construction: %s' % type(geom_input))

        # Now checking the Geometry pointer before finishing initialization
        # by setting the pointer for the object.
        if not g:
            raise GDALException('Cannot create OGR Geometry from input: %s' % str(geom_input))
        self.ptr = g

        # Assigning the SpatialReference object to the geometry, if valid.
        if srs:
            self.srs = srs

        # Setting the class depending upon the OGR Geometry Type
        self.__class__ = GEO_CLASSES[self.geom_type.num]

    def __del__(self):
        "Deletes this Geometry."
        if self._ptr and capi:

    # Pickle routines
    def __getstate__(self):
        srs = self.srs
        if srs:
            srs = srs.wkt
            srs = None
        return bytes(self.wkb), srs

    def __setstate__(self, state):
        wkb, srs = state
        ptr = capi.from_wkb(wkb, None, byref(c_void_p()), len(wkb))
        if not ptr:
            raise GDALException('Invalid OGRGeometry loaded from pickled state.')
        self.ptr = ptr
        self.srs = srs

    def from_bbox(cls, bbox):
        "Constructs a Polygon from a bounding box (4-tuple)."
        x0, y0, x1, y1 = bbox
        return OGRGeometry('POLYGON((%s %s, %s %s, %s %s, %s %s, %s %s))' % (
            x0, y0, x0, y1, x1, y1, x1, y0, x0, y0))

    # ### Geometry set-like operations ###
    # g = g1 | g2
    def __or__(self, other):
        "Returns the union of the two geometries."
        return self.union(other)

    # g = g1 & g2
    def __and__(self, other):
        "Returns the intersection of this Geometry and the other."
        return self.intersection(other)

    # g = g1 - g2
    def __sub__(self, other):
        "Return the difference this Geometry and the other."
        return self.difference(other)

    # g = g1 ^ g2
    def __xor__(self, other):
        "Return the symmetric difference of this Geometry and the other."
        return self.sym_difference(other)

    def __eq__(self, other):
        "Is this Geometry equal to the other?"
        if isinstance(other, OGRGeometry):
            return self.equals(other)
            return False

    def __ne__(self, other):
        "Tests for inequality."
        return not (self == other)

    def __str__(self):
        "WKT is used for the string representation."
        return self.wkt

    # #### Geometry Properties ####
    def dimension(self):
        "Returns 0 for points, 1 for lines, and 2 for surfaces."
        return capi.get_dims(self.ptr)

    def _get_coord_dim(self):
        "Returns the coordinate dimension of the Geometry."
        return capi.get_coord_dim(self.ptr)

    def _set_coord_dim(self, dim):
        "Sets the coordinate dimension of this Geometry."
        if dim not in (2, 3):
            raise ValueError('Geometry dimension must be either 2 or 3')
        capi.set_coord_dim(self.ptr, dim)

    coord_dim = property(_get_coord_dim, _set_coord_dim)

    def geom_count(self):
        "The number of elements in this Geometry."
        return capi.get_geom_count(self.ptr)

    def point_count(self):
        "Returns the number of Points in this Geometry."
        return capi.get_point_count(self.ptr)

    def num_points(self):
        "Alias for `point_count` (same name method in GEOS API.)"
        return self.point_count

    def num_coords(self):
        "Alais for `point_count`."
        return self.point_count

    def geom_type(self):
        "Returns the Type for this Geometry."
        return OGRGeomType(capi.get_geom_type(self.ptr))

    def geom_name(self):
        "Returns the Name of this Geometry."
        return capi.get_geom_name(self.ptr)

    def area(self):
        "Returns the area for a LinearRing, Polygon, or MultiPolygon; 0 otherwise."
        return capi.get_area(self.ptr)

    def envelope(self):
        "Returns the envelope for this Geometry."
        # TODO: Fix Envelope() for Point geometries.
        return Envelope(capi.get_envelope(self.ptr, byref(OGREnvelope())))

    def extent(self):
        "Returns the envelope as a 4-tuple, instead of as an Envelope object."
        return self.envelope.tuple

    # #### SpatialReference-related Properties ####

    # The SRS property
    def _get_srs(self):
        "Returns the Spatial Reference for this Geometry."
            srs_ptr = capi.get_geom_srs(self.ptr)
            return SpatialReference(srs_api.clone_srs(srs_ptr))
        except SRSException:
            return None

    def _set_srs(self, srs):
        "Sets the SpatialReference for this geometry."
        # Do not have to clone the `SpatialReference` object pointer because
        # when it is assigned to this `OGRGeometry` it's internal OGR
        # reference count is incremented, and will likewise be released
        # (decremented) when this geometry's destructor is called.
        if isinstance(srs, SpatialReference):
            srs_ptr = srs.ptr
        elif isinstance(srs, six.integer_types + six.string_types):
            sr = SpatialReference(srs)
            srs_ptr = sr.ptr
            raise TypeError('Cannot assign spatial reference with object of type: %s' % type(srs))
        capi.assign_srs(self.ptr, srs_ptr)

    srs = property(_get_srs, _set_srs)

    # The SRID property
    def _get_srid(self):
        srs = self.srs
        if srs:
            return srs.srid
        return None

    def _set_srid(self, srid):
        if isinstance(srid, six.integer_types):
            self.srs = srid
            raise TypeError('SRID must be set with an integer.')

    srid = property(_get_srid, _set_srid)

    # #### Output Methods ####
    def geos(self):
        "Returns a GEOSGeometry object from this OGRGeometry."
        from django.contrib.gis.geos import GEOSGeometry
        return GEOSGeometry(self.wkb, self.srid)

    def gml(self):
        "Returns the GML representation of the Geometry."
        return capi.to_gml(self.ptr)

    def hex(self):
        "Returns the hexadecimal representation of the WKB (a string)."
        return b2a_hex(self.wkb).upper()

    def json(self):
        Returns the GeoJSON representation of this Geometry.
        return capi.to_json(self.ptr)
    geojson = json

    def kml(self):
        "Returns the KML representation of the Geometry."
        return capi.to_kml(self.ptr, None)

    def wkb_size(self):
        "Returns the size of the WKB buffer."
        return capi.get_wkbsize(self.ptr)

    def wkb(self):
        "Returns the WKB representation of the Geometry."
        if sys.byteorder == 'little':
            byteorder = 1  # wkbNDR (from ogr_core.h)
            byteorder = 0  # wkbXDR
        sz = self.wkb_size
        # Creating the unsigned character buffer, and passing it in by reference.
        buf = (c_ubyte * sz)()
        capi.to_wkb(self.ptr, byteorder, byref(buf))
        # Returning a buffer of the string at the pointer.
        return six.memoryview(string_at(buf, sz))

    def wkt(self):
        "Returns the WKT representation of the Geometry."
        return capi.to_wkt(self.ptr, byref(c_char_p()))

    def ewkt(self):
        "Returns the EWKT representation of the Geometry."
        srs = self.srs
        if srs and srs.srid:
            return 'SRID=%s;%s' % (srs.srid, self.wkt)
            return self.wkt

    # #### Geometry Methods ####
    def clone(self):
        "Clones this OGR Geometry."
        return OGRGeometry(capi.clone_geom(self.ptr), self.srs)

    def close_rings(self):
        If there are any rings within this geometry that have not been
        closed, this routine will do so by adding the starting point at the
        # Closing the open rings.

    def transform(self, coord_trans, clone=False):
        Transforms this geometry to a different spatial reference system.
        May take a CoordTransform object, a SpatialReference object, string
        WKT or PROJ.4, and/or an integer SRID.  By default nothing is returned
        and the geometry is transformed in-place.  However, if the `clone`
        keyword is set, then a transformed clone of this geometry will be
        if clone:
            klone = self.clone()
            return klone

        # Depending on the input type, use the appropriate OGR routine
        # to perform the transformation.
        if isinstance(coord_trans, CoordTransform):
            capi.geom_transform(self.ptr, coord_trans.ptr)
        elif isinstance(coord_trans, SpatialReference):
            capi.geom_transform_to(self.ptr, coord_trans.ptr)
        elif isinstance(coord_trans, six.integer_types + six.string_types):
            sr = SpatialReference(coord_trans)
            capi.geom_transform_to(self.ptr, sr.ptr)
            raise TypeError('Transform only accepts CoordTransform, '
                            'SpatialReference, string, and integer objects.')

    def transform_to(self, srs):
        "For backwards-compatibility."

    # #### Topology Methods ####
    def _topology(self, func, other):
        """A generalized function for topology operations, takes a GDAL function and
        the other geometry to perform the operation on."""
        if not isinstance(other, OGRGeometry):
            raise TypeError('Must use another OGRGeometry object for topology operations!')

        # Returning the output of the given function with the other geometry's
        # pointer.
        return func(self.ptr, other.ptr)

    def intersects(self, other):
        "Returns True if this geometry intersects with the other."
        return self._topology(capi.ogr_intersects, other)

    def equals(self, other):
        "Returns True if this geometry is equivalent to the other."
        return self._topology(capi.ogr_equals, other)

    def disjoint(self, other):
        "Returns True if this geometry and the other are spatially disjoint."
        return self._topology(capi.ogr_disjoint, other)

    def touches(self, other):
        "Returns True if this geometry touches the other."
        return self._topology(capi.ogr_touches, other)

    def crosses(self, other):
        "Returns True if this geometry crosses the other."
        return self._topology(capi.ogr_crosses, other)

    def within(self, other):
        "Returns True if this geometry is within the other."
        return self._topology(capi.ogr_within, other)

    def contains(self, other):
        "Returns True if this geometry contains the other."
        return self._topology(capi.ogr_contains, other)

    def overlaps(self, other):
        "Returns True if this geometry overlaps the other."
        return self._topology(capi.ogr_overlaps, other)

    # #### Geometry-generation Methods ####
    def _geomgen(self, gen_func, other=None):
        "A helper routine for the OGR routines that generate geometries."
        if isinstance(other, OGRGeometry):
            return OGRGeometry(gen_func(self.ptr, other.ptr), self.srs)
            return OGRGeometry(gen_func(self.ptr), self.srs)

    def boundary(self):
        "Returns the boundary of this geometry."
        return self._geomgen(capi.get_boundary)

    def convex_hull(self):
        Returns the smallest convex Polygon that contains all the points in
        this Geometry.
        return self._geomgen(capi.geom_convex_hull)

    def difference(self, other):
        Returns a new geometry consisting of the region which is the difference
        of this geometry and the other.
        return self._geomgen(capi.geom_diff, other)

    def intersection(self, other):
        Returns a new geometry consisting of the region of intersection of this
        geometry and the other.
        return self._geomgen(capi.geom_intersection, other)

    def sym_difference(self, other):
        Returns a new geometry which is the symmetric difference of this
        geometry and the other.
        return self._geomgen(capi.geom_sym_diff, other)

    def union(self, other):
        Returns a new geometry consisting of the region which is the union of
        this geometry and the other.
        return self._geomgen(capi.geom_union, other)

# The subclasses for OGR Geometry.
class Point(OGRGeometry):

    def x(self):
        "Returns the X coordinate for this Point."
        return capi.getx(self.ptr, 0)

    def y(self):
        "Returns the Y coordinate for this Point."
        return capi.gety(self.ptr, 0)

    def z(self):
        "Returns the Z coordinate for this Point."
        if self.coord_dim == 3:
            return capi.getz(self.ptr, 0)

    def tuple(self):
        "Returns the tuple of this point."
        if self.coord_dim == 2:
            return (self.x, self.y)
        elif self.coord_dim == 3:
            return (self.x, self.y, self.z)
    coords = tuple

class LineString(OGRGeometry):

    def __getitem__(self, index):
        "Returns the Point at the given index."
        if index >= 0 and index < self.point_count:
            x, y, z = c_double(), c_double(), c_double()
            capi.get_point(self.ptr, index, byref(x), byref(y), byref(z))
            dim = self.coord_dim
            if dim == 1:
                return (x.value,)
            elif dim == 2:
                return (x.value, y.value)
            elif dim == 3:
                return (x.value, y.value, z.value)
            raise OGRIndexError('index out of range: %s' % str(index))

    def __iter__(self):
        "Iterates over each point in the LineString."
        for i in range(self.point_count):
            yield self[i]

    def __len__(self):
        "The length returns the number of points in the LineString."
        return self.point_count

    def tuple(self):
        "Returns the tuple representation of this LineString."
        return tuple(self[i] for i in range(len(self)))
    coords = tuple

    def _listarr(self, func):
        Internal routine that returns a sequence (list) corresponding with
        the given function.
        return [func(self.ptr, i) for i in range(len(self))]

    def x(self):
        "Returns the X coordinates in a list."
        return self._listarr(capi.getx)

    def y(self):
        "Returns the Y coordinates in a list."
        return self._listarr(capi.gety)

    def z(self):
        "Returns the Z coordinates in a list."
        if self.coord_dim == 3:
            return self._listarr(capi.getz)

# LinearRings are used in Polygons.
class LinearRing(LineString):

class Polygon(OGRGeometry):

    def __len__(self):
        "The number of interior rings in this Polygon."
        return self.geom_count

    def __iter__(self):
        "Iterates through each ring in the Polygon."
        for i in range(self.geom_count):
            yield self[i]

    def __getitem__(self, index):
        "Gets the ring at the specified index."
        if index < 0 or index >= self.geom_count:
            raise OGRIndexError('index out of range: %s' % index)
            return OGRGeometry(capi.clone_geom(capi.get_geom_ref(self.ptr, index)), self.srs)

    # Polygon Properties
    def shell(self):
        "Returns the shell of this Polygon."
        return self[0]  # First ring is the shell
    exterior_ring = shell

    def tuple(self):
        "Returns a tuple of LinearRing coordinate tuples."
        return tuple(self[i].tuple for i in range(self.geom_count))
    coords = tuple

    def point_count(self):
        "The number of Points in this Polygon."
        # Summing up the number of points in each ring of the Polygon.
        return sum(self[i].point_count for i in range(self.geom_count))

    def centroid(self):
        "Returns the centroid (a Point) of this Polygon."
        # The centroid is a Point, create a geometry for this.
        p = OGRGeometry(OGRGeomType('Point'))
        capi.get_centroid(self.ptr, p.ptr)
        return p

# Geometry Collection base class.
class GeometryCollection(OGRGeometry):
    "The Geometry Collection class."

    def __getitem__(self, index):
        "Gets the Geometry at the specified index."
        if index < 0 or index >= self.geom_count:
            raise OGRIndexError('index out of range: %s' % index)
            return OGRGeometry(capi.clone_geom(capi.get_geom_ref(self.ptr, index)), self.srs)

    def __iter__(self):
        "Iterates over each Geometry."
        for i in range(self.geom_count):
            yield self[i]

    def __len__(self):
        "The number of geometries in this Geometry Collection."
        return self.geom_count

    def add(self, geom):
        "Add the geometry to this Geometry Collection."
        if isinstance(geom, OGRGeometry):
            if isinstance(geom, self.__class__):
                for g in geom:
                    capi.add_geom(self.ptr, g.ptr)
                capi.add_geom(self.ptr, geom.ptr)
        elif isinstance(geom, six.string_types):
            tmp = OGRGeometry(geom)
            capi.add_geom(self.ptr, tmp.ptr)
            raise GDALException('Must add an OGRGeometry.')

    def point_count(self):
        "The number of Points in this Geometry Collection."
        # Summing up the number of points in each geometry in this collection
        return sum(self[i].point_count for i in range(self.geom_count))

    def tuple(self):
        "Returns a tuple representation of this Geometry Collection."
        return tuple(self[i].tuple for i in range(self.geom_count))
    coords = tuple

# Multiple Geometry types.
class MultiPoint(GeometryCollection):

class MultiLineString(GeometryCollection):

class MultiPolygon(GeometryCollection):

# Class mapping dictionary (using the OGRwkbGeometryType as the key)
GEO_CLASSES = {1: Point,
               2: LineString,
               3: Polygon,
               4: MultiPoint,
               5: MultiLineString,
               6: MultiPolygon,
               7: GeometryCollection,
               101: LinearRing,
               1 + OGRGeomType.wkb25bit: Point,
               2 + OGRGeomType.wkb25bit: LineString,
               3 + OGRGeomType.wkb25bit: Polygon,
               4 + OGRGeomType.wkb25bit: MultiPoint,
               5 + OGRGeomType.wkb25bit: MultiLineString,
               6 + OGRGeomType.wkb25bit: MultiPolygon,
               7 + OGRGeomType.wkb25bit: GeometryCollection,