Here are the examples of the python api bokeh.transform.cumsum taken from open source projects. By voting up you can indicate which examples are most useful and appropriate.
4 Examples
3
View Source File : test_transform.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_basic(object):
s = bt.cumsum("foo")
assert isinstance(s, dict)
assert list(s.keys()) == ["expr"]
assert isinstance(s['expr'], CumSum)
assert s['expr'].field == 'foo'
assert s['expr'].include_zero == False
def test_include_zero(object):
3
View Source File : test_transform.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_include_zero(object):
s = bt.cumsum("foo", include_zero=True)
assert isinstance(s, dict)
assert list(s.keys()) == ["expr"]
assert isinstance(s['expr'], CumSum)
assert s['expr'].field == 'foo'
assert s['expr'].include_zero == True
class Test_dodge(object):
0
View Source File : plot.py
License : MIT License
Project Creator : PatrikHlobil
License : MIT License
Project Creator : PatrikHlobil
def pieplot(
source,
data_cols,
colormap,
hovertool,
hovertool_string,
figure_options,
xlabelname,
**kwargs,
):
"""Creates a Pieplot from the provided data."""
# Determine Colormap for Pieplot:
colormap = get_colormap(colormap, len(source["__x__values"]))
source["color"] = colormap
max_col_stringlength = max([len(col) for col in data_cols])
# Create Figure for Pieplot:
plot_width = figure_options["plot_width"]
plot_height = figure_options["plot_height"]
title = figure_options["title"]
toolbar_location = None
x_range = (-1.4 - 0.05 * max_col_stringlength, 2)
y_range = (-1.2, 1.2)
p = figure(
plot_width=plot_width,
plot_height=plot_height,
title=title,
toolbar_location=toolbar_location,
x_range=x_range,
y_range=y_range,
)
p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None
# Calculate angles for Pieplot:
for col in data_cols:
source[col + "_angle"] = source[col] / source[col].sum() * 2 * np.pi
# Make Pieplots:
for i, col in list(enumerate(data_cols))[::-1]:
inner_radius = float(i) / len(data_cols)
outer_radius = float(i + 0.9) / len(data_cols)
source["inner_radius"] = [inner_radius] * len(source["__x__values"])
source["outer_radius"] = [outer_radius] * len(source["__x__values"])
legend_parameter_name = "legend_field"
if i == 0:
kwargs[legend_parameter_name] = "__x__values_original"
print(kwargs[legend_parameter_name])
else:
kwargs.pop(legend_parameter_name, None)
if "line_color" not in kwargs:
kwargs["line_color"] = "white"
glyph = p.annular_wedge(
x=0,
y=0,
inner_radius="inner_radius",
outer_radius="outer_radius",
start_angle=cumsum(col + "_angle", include_zero=True),
end_angle=cumsum(col + "_angle"),
fill_color="color",
source=source,
**kwargs,
)
# Add annotation:
if len(data_cols) > 1:
text_source = {
"__x__values": [-1.3 - 0.05 * max_col_stringlength],
"y": [0.5 - 0.3 * i],
"text": [col],
}
p.text(
x="__x__values",
y="y",
text="text",
text_font_style="bold",
source=text_source,
)
p.line(
x=[-1.3 - 0.04 * (max_col_stringlength - len(col)), 0],
y=[0.5 - 0.3 * i, -(inner_radius + outer_radius) / 2],
line_color="black",
)
# Define hovertool and add to Pieplot:
if hovertool:
my_hover = HoverTool(renderers=[glyph])
if hovertool_string is None:
my_hover.tooltips = [
(xlabelname, "@__x__values_original"),
(col, "@{%s}" % col),
]
else:
my_hover.tooltips = hovertool_string
p.add_tools(my_hover)
return p
def mapplot(df, x, y, **kwargs):
0
View Source File : render.py
License : MIT License
Project Creator : sfu-db
License : MIT License
Project Creator : sfu-db
def pie_viz(
df: pd.DataFrame,
nrows: int,
col: str,
plot_width: int,
plot_height: int,
pie: Pie,
) -> Tuple[Panel, List[str]]:
"""
Render a pie chart
"""
# pylint: disable=too-many-arguments
npresent = df[col].sum()
df.index = list(df.index) # for CategoricalIndex to normal Index
if nrows > npresent:
df = df.append(pd.DataFrame({col: [nrows - npresent]}, index=["Others"]))
df["pct"] = df[col] / nrows * 100
df["angle"] = df[col] / nrows * 2 * np.pi
tooltips = [(col, "@index"), ("Count", f"@{{{col}}}"), ("Percent", "@pct{0.2f}%")]
fig = Figure(
plot_width=plot_width,
plot_height=plot_height,
title=col,
toolbar_location=None,
tools="hover",
tooltips=tooltips,
)
if pie.colors is None:
color_list = list((CATEGORY20 * (len(df) // len(CATEGORY20) + 1))[0 : len(df)])
else:
color_list = list(pie.colors[0 : len(df)])
df["colour"] = color_list
df.index = df.index.astype(str)
df.index = df.index.map(lambda x: x[:13] + "..." if len(x) > 13 else x)
pie = fig.wedge(
x=0,
y=1,
radius=0.9,
start_angle=cumsum("angle", include_zero=True),
end_angle=cumsum("angle"),
line_color="white",
fill_color="colour",
source=df,
)
legend = Legend(items=[LegendItem(label=dict(field="index"), renderers=[pie])])
legend.label_text_font_size = "8pt"
fig.add_layout(legend, "left")
tweak_figure(fig, "pie")
fig.axis.major_label_text_font_size = "0pt"
fig.axis.major_tick_line_color = None
return Panel(child=row(fig), title="Pie Chart"), color_list
def hist_viz(