bokeh.palettes.Category10

Here are the examples of the python api bokeh.palettes.Category10 taken from open source projects. By voting up you can indicate which examples are most useful and appropriate.

4 Examples 7

3 View Source File : linegraph.py
License : MIT License
Project Creator : kurusugawa-computer

def get_color_from_small_palette(index: int) -> Color:
    my_palette = bokeh.palettes.Category10[10]
    return my_palette[index % len(my_palette)]


def add_legend_to_figure(fig: bokeh.plotting.Figure) -> None:

3 View Source File : scatter.py
License : MIT License
Project Creator : kurusugawa-computer

def get_color_from_palette(index: int) -> Color:
    my_palette = bokeh.palettes.Category10[10]
    return my_palette[index % len(my_palette)]


def plot_bubble(

0 View Source File : plot.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : CoffeaTeam

def bokeh_plot(histo, jup_url="http://127.0.0.1:8889"):
    if not isnotebook():
        raise NotImplementedError("Only usable in jupyter notebook")
    import bokeh.plotting.figure as bk_figure
    from bokeh.io import show
    from bokeh import palettes
    from bokeh.layouts import row, column
    from bokeh.models import ColumnDataSource
    from bokeh.models.widgets import RadioButtonGroup, CheckboxButtonGroup
    from bokeh.models.widgets import RangeSlider, Div
    from bokeh.io import output_notebook  # enables plot interface in J notebook

    # init bokeh

    from bokeh.application import Application
    from bokeh.application.handlers import FunctionHandler

    from bokeh.core.validation import silence
    from bokeh.core.validation.warnings import EMPTY_LAYOUT

    silence(EMPTY_LAYOUT, True)

    output_notebook()

    # Set up widgets
    cfg_labels = ["Ghost"]
    wi_config = CheckboxButtonGroup(labels=cfg_labels, active=[0])
    wi_dense_select = RadioButtonGroup(
        labels=[ax.name for ax in histo.dense_axes()], active=0
    )
    wi_sparse_select = RadioButtonGroup(
        labels=[ax.name for ax in histo.sparse_axes()], active=0
    )

    # Dense widgets
    sliders = {}
    for ax in histo.dense_axes():
        edge_vals = (histo.axis(ax.name).edges()[0], histo.axis(ax.name).edges()[-1])
        _smallest_bin = numpy.min(numpy.diff(histo.axis(ax.name).edges()))
        sliders[ax.name] = RangeSlider(
            title=ax.name,
            value=edge_vals,
            start=edge_vals[0],
            end=edge_vals[1],
            step=_smallest_bin,
            name=ax.name,
        )

    # Cat widgets
    togglers = {}
    for ax in histo.sparse_axes():
        togglers[ax.name] = CheckboxButtonGroup(
            labels=[i.name for i in ax.identifiers()], active=[0], name=ax.name
        )

    # Toggles for all widgets
    configers = {}
    for ax in histo.sparse_axes():
        configers[ax.name] = CheckboxButtonGroup(
            labels=["Display", "Ghost"], active=[0, 1], name=ax.name
        )
    for ax in histo.dense_axes():
        configers[ax.name] = CheckboxButtonGroup(
            labels=["Display"], active=[0], name=ax.name
        )

    # Figure
    fig = bk_figure(
        title="1D Projection",
        plot_width=500,
        plot_height=500,
        min_border=20,
        toolbar_location=None,
    )
    fig.yaxis.axis_label = "N"
    fig.xaxis.axis_label = "Quantity"

    # Iterate over possible overlays
    _max_idents = 0  # Max number of simultaneou histograms
    for ax in histo.sparse_axes():
        _max_idents = max(_max_idents, len([i.name for i in ax.identifiers()]))

    # Data source list
    sources = []
    sources_ghost = []
    for i in range(_max_idents):
        sources.append(ColumnDataSource(dict(left=[], top=[], right=[], bottom=[])))
        sources_ghost.append(
            ColumnDataSource(dict(left=[], top=[], right=[], bottom=[]))
        )

    # Hist list
    hists = []
    hists_ghost = []
    for i in range(_max_idents):
        if _max_idents   <   10:
            _color = palettes.Category10[min(max(3, _max_idents), 10)][i]
        else:
            _color = palettes.magma(_max_idents)[i]
        hists.append(
            fig.quad(
                left="left",
                right="right",
                top="top",
                bottom="bottom",
                source=sources[i],
                alpha=0.9,
                color=_color,
            )
        )
        hists_ghost.append(
            fig.quad(
                left="left",
                right="right",
                top="top",
                bottom="bottom",
                source=sources_ghost[i],
                alpha=0.05,
                color=_color,
            )
        )

    def update_data(attrname, old, new):
        sparse_active = wi_sparse_select.active
        sparse_name = [ax.name for ax in histo.sparse_axes()][sparse_active]
        sparse_other = [ax.name for ax in histo.sparse_axes() if ax.name != sparse_name]

        dense_active = wi_dense_select.active
        dense_name = [ax.name for ax in histo.dense_axes()][dense_active]
        dense_other = [ax.name for ax in histo.dense_axes() if ax.name != dense_name]

        # Apply cuts in projections
        _h = histo.copy()
        for proj_ax in sparse_other:
            _idents = histo.axis(proj_ax).identifiers()
            _labels = [ident.name for ident in _idents]
            if 0 in configers[proj_ax].active:
                _h = _h.integrate(
                    proj_ax, [_labels[i] for i in togglers[proj_ax].active]
                )
            else:
                _h = _h.integrate(proj_ax)

        for proj_ax in dense_other:
            _h = _h.integrate(
                proj_ax, slice(sliders[proj_ax].value[0], sliders[proj_ax].value[1])
            )

        for cat_ix in range(_max_idents):
            # Update histo for each toggled overlay
            if cat_ix in togglers[sparse_name].active:
                cat_value = histo.axis(sparse_name).identifiers()[cat_ix]
                h1d = _h.integrate(sparse_name, cat_value)

                # Get shown histogram
                values = h1d.project(dense_name).values()
                if values != {}:
                    h = values[()]
                    bins = h1d.axis(dense_name).edges()

                    # Apply cuts on shown axis
                    bin_los = bins[:-1][bins[:-1] > sliders[dense_name].value[0]]
                    bin_his = bins[1:][bins[1:]  <  sliders[dense_name].value[1]]
                    new_bins = numpy.intersect1d(bin_los, bin_his)
                    bin_ixs = numpy.searchsorted(bins, new_bins)[:-1]
                    h = h[bin_ixs]

                    sources[cat_ix].data = dict(
                        left=new_bins[:-1],
                        right=new_bins[1:],
                        top=h,
                        bottom=numpy.zeros_like(h),
                    )
                else:
                    sources[cat_ix].data = dict(left=[], right=[], top=[], bottom=[])

                # Add ghosts
                if 0 in wi_config.active:
                    h1d = histo.integrate(sparse_name, cat_value)
                    for proj_ax in sparse_other:
                        _idents = histo.axis(proj_ax).identifiers()
                        _labels = [ident.name for ident in _idents]
                        if 1 not in configers[proj_ax].active:
                            h1d = h1d.integrate(
                                proj_ax, [_labels[i] for i in togglers[proj_ax].active]
                            )
                        else:
                            h1d = h1d.integrate(proj_ax)
                    values = h1d.project(dense_name).values()
                    if values != {}:
                        h = h1d.project(dense_name).values()[()]
                        bins = h1d.axis(dense_name).edges()
                        sources_ghost[cat_ix].data = dict(
                            left=bins[:-1],
                            right=bins[1:],
                            top=h,
                            bottom=numpy.zeros_like(h),
                        )
                    else:
                        sources_ghost[cat_ix].data = dict(
                            left=[], right=[], top=[], bottom=[]
                        )
            else:
                sources[cat_ix].data = dict(left=[], right=[], top=[], bottom=[])
                sources_ghost[cat_ix].data = dict(left=[], right=[], top=[], bottom=[])

        # Cosmetics
        fig.xaxis.axis_label = dense_name

    for name, slider in sliders.items():
        slider.on_change("value", update_data)
    for name, toggler in togglers.items():
        toggler.on_change("active", update_data)
    for name, configer in configers.items():
        configer.on_change("active", update_data)
    # Button
    for w in [wi_dense_select, wi_sparse_select, wi_config]:
        w.on_change("active", update_data)

    from bokeh.models.widgets import Panel, Tabs

    layout = row(
        fig,
        column(
            Div(
                text=" < b>Overlay Axis: < /b>",
                style={"font-size": "100%", "color": "black"},
            ),
            wi_sparse_select,
            Div(
                text=" < b>Plot Axis: < /b>", style={"font-size": "100%", "color": "black"}
            ),
            wi_dense_select,
            Div(
                text=" < b>Categorical Cuts: < /b>",
                style={"font-size": "100%", "color": "black"},
            ),
            *[toggler for name, toggler in togglers.items()],
            Div(
                text=" < b>Dense Cuts: < /b>", style={"font-size": "100%", "color": "black"}
            ),
            *[slider for name, slider in sliders.items()]
        ),
    )

    # Config prep
    incl_lists = [[], [], []]
    for i, key in enumerate(list(configers.keys())):
        incl_lists[i // max(5, len(list(configers.keys())) / 3)].append(
            Div(
                text=" < b>{}: < /b>".format(key),
                style={"font-size": "70%", "color": "black"},
            )
        )
        incl_lists[i // max(5, len(list(configers.keys())) / 3)].append(configers[key])

    layout_cfgs = column(
        row(
            column(
                Div(
                    text=" < b>Configs: < /b>",
                    style={"font-size": "100%", "color": "black"},
                ),
                wi_config,
            )
        ),
        Div(
            text=" < b>Axis togglers: < /b>", style={"font-size": "100%", "color": "black"}
        ),
        row(
            column(incl_lists[0]),
            column(incl_lists[1]),
            column(incl_lists[2]),
        ),
    )

    # Update active buttons
    def update_layout(attrname, old, new):
        active_axes = [None]
        for name, wi in configers.items():
            if 0 in wi.active:
                active_axes.append(name)
        for child in layout.children[1].children:
            if child.name not in active_axes:
                child.visible = False
            else:
                child.visible = True

    for name, configer in configers.items():
        configer.on_change("active", update_layout)

    tab1 = Panel(child=layout, title="Projection")
    tab2 = Panel(child=layout_cfgs, title="Configs")
    tabs = Tabs(tabs=[tab1, tab2])

    def modify_doc(doc):
        doc.add_root(row(tabs, width=800))
        doc.title = "Sliders"

    handler = FunctionHandler(modify_doc)
    app = Application(handler)

    show(app, notebook_url=jup_url)
    update_data("", "", "")

0 View Source File : bokeh_plot.py
License : MIT License
Project Creator : stared

    def __init__(
        self,
        max_cols: int = 2,
        skip_first: int = 2,
        cell_size: Tuple[int, int] = (400, 300),
        output_file: str = './bokeh_output.html'
    ):
        """
        Args:
            max_cols: max number of charts in one row
            skip_first: flag, skip first log
            cell_size: size of one chart
            output_file: file to save the output
        """
        from bokeh import plotting, io, palettes
        self.plotting = plotting
        self.io = io
        self.plot_width, self.plot_height = cell_size
        self.max_cols = max_cols
        self.skip_first = skip_first  # think about it
        self.figures = {}
        self.is_notebook = False
        self.output_file = output_file
        self.colors = palettes.Category10[10]

    def send(self, logger: MainLogger) -> None: