bokeh.models.graphs.NodesAndLinkedEdges

Here are the examples of the python api bokeh.models.graphs.NodesAndLinkedEdges taken from open source projects. By voting up you can indicate which examples are most useful and appropriate.

5 Examples 7

0 Source : draw.py
with Apache License 2.0
from aws

def circuit_from(bqm):
    G = bqm.to_networkx_graph()
    plot = Plot(
        plot_width=600, plot_height=400, x_range=Range1d(-0.1, 1.1), y_range=Range1d(-0.1, 1.1)
    )
    plot.title.text = "Multiplication as a BQM"
    plot.add_tools(HoverTool(tooltips=None), TapTool(), BoxSelectTool())
    graph_renderer = from_networkx(G, circuit_layout)

    circle_size = 25
    graph_renderer.node_renderer.glyph = Circle(size=circle_size, fill_color="#F5F7FB")
    graph_renderer.node_renderer.selection_glyph = Circle(size=circle_size, fill_color="#EEA64E")
    graph_renderer.node_renderer.hover_glyph = Circle(size=circle_size, fill_color="#FFE86C")

    edge_size = 2
    graph_renderer.edge_renderer.glyph = MultiLine(
        line_color="#CCCCCC", line_alpha=0.8, line_width=edge_size
    )
    graph_renderer.edge_renderer.selection_glyph = MultiLine(
        line_color="#EEA64E", line_width=edge_size
    )
    graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color="#FFE86C", line_width=edge_size)

    graph_renderer.selection_policy = NodesAndLinkedEdges()
    graph_renderer.inspection_policy = NodesAndLinkedEdges()

    plot.renderers.append(graph_renderer)

    plot.background_fill_color = "#202239"

    add_labels(plot)
    show(Row(plot))


def frequency_of(results):

0 Source : plotting.py
with BSD 3-Clause "New" or "Revised" License
from FeatureLabs

def dendrogram(D, figargs=None):
    '''Creates a dendrogram plot.
    This plot can show full structure of a given dendrogram.

    Args:
        D (henchman.selection.Dendrogram): An initialized dendrogram object

    Examples:
        >>> from henchman.selection import Dendrogram
        >>> from henchman.plotting import show
        >>> import henchman.plotting as hplot
        >>> D = Dendrogram(X)
        >>> plot = hplot.dendrogram(D)
        >>> show(plot)
    '''
    if figargs is None:
        return lambda figargs: dendrogram(D, figargs=figargs)
    G = nx.Graph()

    vertices_source = ColumnDataSource(
        pd.DataFrame({'index': D.columns.keys(),
                      'desc': list(D.columns.values())}))
    edges_source = ColumnDataSource(
        pd.DataFrame(D.edges[0]).rename(
            columns={1: 'end', 0: 'start'}))
    step_source = ColumnDataSource(
        pd.DataFrame({'step': [0],
                      'thresh': [D.threshlist[0]],
                      'components': [len(D.graphs[0])]}))

    G.add_nodes_from([str(x) for x in vertices_source.data['index']])
    G.add_edges_from(zip(
        [str(x) for x in edges_source.data['start']],
        [str(x) for x in edges_source.data['end']]))

    graph_renderer = from_networkx(G, nx.circular_layout,
                                   scale=1, center=(0, 0))

    graph_renderer.node_renderer.data_source = vertices_source
    graph_renderer.node_renderer.view = CDSView(source=vertices_source)
    graph_renderer.edge_renderer.data_source = edges_source
    graph_renderer.edge_renderer.view = CDSView(source=edges_source)

    plot = Plot(plot_width=400, plot_height=400,
                x_range=Range1d(-1.1, 1.1),
                y_range=Range1d(-1.1, 1.1))
    plot.title.text = "Feature Connectivity"
    graph_renderer.node_renderer.glyph = Circle(
        size=5, fill_color=Spectral4[0])
    graph_renderer.node_renderer.selection_glyph = Circle(
        size=15, fill_color=Spectral4[2])
    graph_renderer.edge_renderer.data_source = edges_source
    graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC",
                                                   line_alpha=0.6,
                                                   line_width=.5)
    graph_renderer.edge_renderer.selection_glyph = MultiLine(
        line_color=Spectral4[2],
        line_width=3)
    graph_renderer.node_renderer.hover_glyph = Circle(
        size=5,
        fill_color=Spectral4[1])
    graph_renderer.selection_policy = NodesAndLinkedEdges()
    graph_renderer.inspection_policy = NodesAndLinkedEdges()

    plot.renderers.append(graph_renderer)

    plot.add_tools(
        HoverTool(tooltips=[("feature", "@desc"),
                            ("index", "@index"), ]),
        TapTool(),
        BoxZoomTool(),
        SaveTool(),
        ResetTool())

    plot = _modify_plot(plot, figargs)

    if figargs['static']:
        return plot

    def modify_doc(doc, D, figargs):
        data_table = DataTable(source=step_source,
                               columns=[TableColumn(field='step',
                                                    title='Step'),
                                        TableColumn(field='thresh',
                                                    title='Thresh'),
                                        TableColumn(field='components',
                                                    title='Components')],
                               height=50, width=400)

        def callback(attr, old, new):
            try:
                edges = D.edges[slider.value]
                edges_source.data = ColumnDataSource(
                    pd.DataFrame(edges).rename(columns={1: 'end',
                                                        0: 'start'})).data
                step_source.data = ColumnDataSource(
                    {'step': [slider.value],
                     'thresh': [D.threshlist[slider.value]],
                     'components': [len(D.graphs[slider.value])]}).data
            except Exception as e:
                print(e)

        slider = Slider(start=0,
                        end=(len(D.edges) - 1),
                        value=0,
                        step=1,
                        title="Step")
        slider.on_change('value', callback)

        doc.add_root(column(slider, data_table, plot))
    return lambda doc: modify_doc(doc, D, figargs)


def f1(X, y, model, n_precs=1000, n_splits=1, figargs=None):

0 Source : visualize_utils.py
with MIT License
from ratsgo

def visualize_self_attention_scores(tokens, scores, filename="/notebooks/embedding/self-attention.png",
                                    use_notebook=False):
    mean_prob = np.mean(scores)
    weighted_edges = []
    for idx_1, token_prob_dist_1 in enumerate(scores):
        for idx_2, el in enumerate(token_prob_dist_1):
            if idx_1 == idx_2 or el   <   mean_prob:
                weighted_edges.append((tokens[idx_1], tokens[idx_2], 0))
            else:
                weighted_edges.append((tokens[idx_1], tokens[idx_2], el))
    max_prob = np.max([el[2] for el in weighted_edges])
    weighted_edges = [(el[0], el[1], (el[2] - mean_prob) / (max_prob - mean_prob)) for el in weighted_edges]

    G = nx.Graph()
    G.add_nodes_from([el for el in tokens])
    G.add_weighted_edges_from(weighted_edges)

    plot = Plot(plot_width=500, plot_height=500,
                x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1))
    plot.add_tools(HoverTool(tooltips=None), TapTool(), BoxSelectTool())

    graph_renderer = from_networkx(G, nx.circular_layout, scale=1, center=(0, 0))

    graph_renderer.node_renderer.data_source.data['colors'] = Spectral8[:len(tokens)]
    graph_renderer.node_renderer.glyph = Circle(size=15, line_color=None, fill_color="colors")
    graph_renderer.node_renderer.selection_glyph = Circle(size=15, fill_color="colors")
    graph_renderer.node_renderer.hover_glyph = Circle(size=15, fill_color="grey")

    graph_renderer.edge_renderer.data_source.data["line_width"] = [G.get_edge_data(a, b)['weight'] * 3 for a, b in
                                                                   G.edges()]
    graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC", line_width={'field': 'line_width'})
    graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color="grey", line_width=5)
    graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color="grey", line_width=5)

    graph_renderer.selection_policy = NodesAndLinkedEdges()
    graph_renderer.inspection_policy = EdgesAndLinkedNodes()

    plot.renderers.append(graph_renderer)

    x, y = zip(*graph_renderer.layout_provider.graph_layout.values())
    data = {'x': list(x), 'y': list(y), 'connectionNames': tokens}
    source = ColumnDataSource(data)
    labels = LabelSet(x='x', y='y', text='connectionNames', source=source, text_align='center')
    plot.renderers.append(labels)
    plot.add_tools(SaveTool())
    if use_notebook:
        output_notebook()
        show(plot)
    else:
        export_png(plot, filename)
        print("save @ " + filename)


def visualize_words(words, vecs, palette="Viridis256", filename="/notebooks/embedding/words.png",

0 Source : showMatLabFig._spatioTemporal.py
with MIT License
from richieBao

def interactiveG(G):
    from bokeh.models.graphs import NodesAndLinkedEdges,from_networkx
    from bokeh.models import Circle, HoverTool, MultiLine,Plot,Range1d,StaticLayoutProvider
    from bokeh.plotting import figure, output_file, show, ColumnDataSource
    from bokeh.io import output_notebook, show
    output_notebook()
    # We could use figure here but don't want all the axes and titles  
    #plot=Plot(plot_width=1600, plot_height=300, tooltips=TOOLTIPS,title="PHmi+landmarks+route+power(10,-5)",x_range=Range1d(-1.1,1.1), y_range=Range1d(-1.1,1.1))
    
    output_file("PHMI_network")
    source=ColumnDataSource(data=dict(
        x=locations[0].tolist(),
        #x=[idx for idx in range(len(PHMIList))],
        #y=locations[1].tolist(),
        y=PHMIList,
        #desc=[str(i) for i in PHMIList],
        #PHMI_value=PHMI_dic[0][0].tolist(),    
    ))
    TOOLTIPS=[
        ("index", "$index"),
        ("(x,y)", "($x, $y)"),
        #("desc", "@desc"),
        #("PHMI", "$PHMI_value"),
    ]
    
    
    plot=figure(x_range=Range1d(-1.1,1.1), y_range=Range1d(-1.1,1.1),plot_width=2200, plot_height=500,tooltips=TOOLTIPS,title="PHMI_network")
    
    #G_position={key:(G.position[key][1],G.position[key][0]) for key in G.position.keys()}
    graph = from_networkx(G,nx.spring_layout,scale=1, center=(0,0))  
    #plot.renderers.append(graph) 
    
    fixed_layout_provider = StaticLayoutProvider(graph_layout=G.position)
    graph.layout_provider = fixed_layout_provider
    plot.renderers.append(graph)
    
    # Blue circles for nodes, and light grey lines for edges  
    graph.node_renderer.glyph = Circle(size=5, fill_color='#2b83ba')  
    graph.edge_renderer.glyph = MultiLine(line_color="#cccccc", line_alpha=0.8, line_width=2)  
      
    # green hover for both nodes and edges  
    graph.node_renderer.hover_glyph = Circle(size=25, fill_color='#abdda4')  
    graph.edge_renderer.hover_glyph = MultiLine(line_color='#abdda4', line_width=4)  
      
    # When we hover over nodes, highlight adjecent edges too  
    graph.inspection_policy = NodesAndLinkedEdges()  
      
    plot.add_tools(HoverTool(tooltips=None))  
     
    colors=('aliceblue', 'antiquewhite', 'aqua', 'aquamarine', 'azure', 'beige', 'bisque', 'black', 'blanchedalmond', 'blue', 'blueviolet', 'brown', 'burlywood', 'cadetblue', 'chartreuse', 'chocolate', 'coral', 'cornflowerblue', 'cornsilk', 'crimson', 'cyan', 'darkblue', 'darkcyan', 'darkgoldenrod', 'darkgray', 'darkgreen', 'darkgrey', 'darkkhaki', 'darkmagenta', 'darkolivegreen', 'darkorange', 'darkorchid', 'darkred', 'darksalmon', 'darkseagreen', 'darkslateblue', 'darkslategray', 'darkslategrey', 'darkturquoise', 'darkviolet', 'deeppink', 'deepskyblue', 'dimgray', 'dimgrey', 'dodgerblue', 'firebrick', 'floralwhite', 'forestgreen', 'fuchsia', 'gainsboro', 'ghostwhite', 'gold', 'goldenrod', 'gray', 'green', 'greenyellow', 'grey', 'honeydew', 'hotpink', 'indianred', 'indigo', 'ivory', 'khaki', 'lavender', 'lavenderblush', 'lawngreen', 'lemonchiffon', 'lightblue', 'lightcoral', 'lightcyan', 'lightgoldenrodyellow', 'lightgray', 'lightgreen', 'lightgrey', 'lightpink', 'lightsalmon', 'lightseagreen', 'lightskyblue', 'lightslategray', 'lightslategrey', 'lightsteelblue', 'lightyellow', 'lime', 'limegreen', 'linen', 'magenta', 'maroon', 'mediumaquamarine', 'mediumblue', 'mediumorchid', 'mediumpurple', 'mediumseagreen', 'mediumslateblue', 'mediumspringgreen', 'mediumturquoise', 'mediumvioletred', 'midnightblue', 'mintcream', 'mistyrose', 'moccasin', 'navajowhite', 'navy', 'oldlace', 'olive', 'olivedrab', 'orange', 'orangered', 'orchid', 'palegoldenrod', 'palegreen', 'paleturquoise', 'palevioletred', 'papayawhip', 'peachpuff', 'peru', 'pink', 'plum', 'powderblue', 'purple', 'red', 'rosybrown', 'royalblue', 'saddlebrown', 'salmon', 'sandybrown', 'seagreen', 'seashell', 'sienna', 'silver', 'skyblue', 'slateblue', 'slategray', 'slategrey', 'snow', 'springgreen', 'steelblue', 'tan', 'teal', 'thistle', 'tomato', 'turquoise', 'violet', 'wheat', 'white', 'whitesmoke', 'yellow', 'yellowgreen')
    ScalePhmi=math.pow(10,1)
    i=0
    for val,idx in zip(phmi_breakPtsNeg, plot_x):
        plot.line(idx,np.array(val)*ScalePhmi,line_color=colors[i])
        i+=1    
        
    show(plot)
    
#06-single landmarks pattern 无人车位置点与对应landmarks栅格图
#convert location and corresponding landmarks to raster data format using numpy.histogram2d
def colorMesh_phmi(landmarks,locations,targetPts_idx,Phmi):

0 Source : driverlessCityProject_spatialPointsPattern_association_basic.py
with MIT License
from richieBao

def interactiveG(G):
    from bokeh.models.graphs import NodesAndLinkedEdges,from_networkx
    from bokeh.models import Circle, HoverTool, MultiLine,Plot,Range1d,StaticLayoutProvider
    from bokeh.plotting import figure, output_file, show, ColumnDataSource
    from bokeh.io import output_notebook, show
    output_notebook()
    # We could use figure here but don't want all the axes and titles  
    #plot=Plot(plot_width=1600, plot_height=300, tooltips=TOOLTIPS,title="PHmi+landmarks+route+power(10,-5)",x_range=Range1d(-1.1,1.1), y_range=Range1d(-1.1,1.1))
    
    output_file("PHMI_network")
    source=ColumnDataSource(data=dict(
        x=locations[0].tolist(),
        #x=[idx for idx in range(len(PHMIList))],
        #y=locations[1].tolist(),
        y=PHMIList,
        #desc=[str(i) for i in PHMIList],
        #PHMI_value=PHMI_dic[0][0].tolist(),    
    ))
    TOOLTIPS=[
        ("index", "$index"),
        ("(x,y)", "($x, $y)"),
        #("desc", "@desc"),
        #("PHMI", "$PHMI_value"),
    ]
    
    
    plot=figure(x_range=Range1d(-1.1,1.1), y_range=Range1d(-1.1,1.1),plot_width=2200, plot_height=500,tooltips=TOOLTIPS,title="PHMI_network")
    
    #G_position={key:(G.position[key][1],G.position[key][0]) for key in G.position.keys()}
    graph = from_networkx(G,nx.spring_layout,scale=1, center=(0,0))  
    #plot.renderers.append(graph) 
    
    fixed_layout_provider = StaticLayoutProvider(graph_layout=G.position)
    graph.layout_provider = fixed_layout_provider
    plot.renderers.append(graph)
    
    # Blue circles for nodes, and light grey lines for edges  
    graph.node_renderer.glyph = Circle(size=5, fill_color='#2b83ba')  
    graph.edge_renderer.glyph = MultiLine(line_color="#cccccc", line_alpha=0.8, line_width=2)  
      
    # green hover for both nodes and edges  
    graph.node_renderer.hover_glyph = Circle(size=25, fill_color='#abdda4')  
    graph.edge_renderer.hover_glyph = MultiLine(line_color='#abdda4', line_width=4)  
      
    # When we hover over nodes, highlight adjecent edges too  
    graph.inspection_policy = NodesAndLinkedEdges()  
      
    plot.add_tools(HoverTool(tooltips=None))  
     
    colors=('aliceblue', 'antiquewhite', 'aqua', 'aquamarine', 'azure', 'beige', 'bisque', 'black', 'blanchedalmond', 'blue', 'blueviolet', 'brown', 'burlywood', 'cadetblue', 'chartreuse', 'chocolate', 'coral', 'cornflowerblue', 'cornsilk', 'crimson', 'cyan', 'darkblue', 'darkcyan', 'darkgoldenrod', 'darkgray', 'darkgreen', 'darkgrey', 'darkkhaki', 'darkmagenta', 'darkolivegreen', 'darkorange', 'darkorchid', 'darkred', 'darksalmon', 'darkseagreen', 'darkslateblue', 'darkslategray', 'darkslategrey', 'darkturquoise', 'darkviolet', 'deeppink', 'deepskyblue', 'dimgray', 'dimgrey', 'dodgerblue', 'firebrick', 'floralwhite', 'forestgreen', 'fuchsia', 'gainsboro', 'ghostwhite', 'gold', 'goldenrod', 'gray', 'green', 'greenyellow', 'grey', 'honeydew', 'hotpink', 'indianred', 'indigo', 'ivory', 'khaki', 'lavender', 'lavenderblush', 'lawngreen', 'lemonchiffon', 'lightblue', 'lightcoral', 'lightcyan', 'lightgoldenrodyellow', 'lightgray', 'lightgreen', 'lightgrey', 'lightpink', 'lightsalmon', 'lightseagreen', 'lightskyblue', 'lightslategray', 'lightslategrey', 'lightsteelblue', 'lightyellow', 'lime', 'limegreen', 'linen', 'magenta', 'maroon', 'mediumaquamarine', 'mediumblue', 'mediumorchid', 'mediumpurple', 'mediumseagreen', 'mediumslateblue', 'mediumspringgreen', 'mediumturquoise', 'mediumvioletred', 'midnightblue', 'mintcream', 'mistyrose', 'moccasin', 'navajowhite', 'navy', 'oldlace', 'olive', 'olivedrab', 'orange', 'orangered', 'orchid', 'palegoldenrod', 'palegreen', 'paleturquoise', 'palevioletred', 'papayawhip', 'peachpuff', 'peru', 'pink', 'plum', 'powderblue', 'purple', 'red', 'rosybrown', 'royalblue', 'saddlebrown', 'salmon', 'sandybrown', 'seagreen', 'seashell', 'sienna', 'silver', 'skyblue', 'slateblue', 'slategray', 'slategrey', 'snow', 'springgreen', 'steelblue', 'tan', 'teal', 'thistle', 'tomato', 'turquoise', 'violet', 'wheat', 'white', 'whitesmoke', 'yellow', 'yellowgreen')
    ScalePhmi=math.pow(10,1)
    i=0
    for val,idx in zip(phmi_breakPtsNeg, plot_x):
        plot.line(idx,np.array(val)*ScalePhmi,line_color=colors[i])
        i+=1    
        
    show(plot)
    
#05-single landmarks pattern 无人车位置点与对应landmarks栅格图
#convert location and corresponding landmarks to raster data format using numpy.histogram2d
def colorMesh_phmi(landmarks,locations,targetPts_idx,Phmi):