Here are the examples of the python api bokeh.models.Slider taken from open source projects. By voting up you can indicate which examples are most useful and appropriate.
25 Examples
3
View Source File : config.py
License : GNU General Public License v3.0
Project Creator : happydasch
License : GNU General Public License v3.0
Project Creator : happydasch
def _create_lookback_config(self):
title = Paragraph(
text='Lookback period',
css_classes=['config-title'])
self.sld_lookback = Slider(
title='Period for data to plot',
value=self._client.lookback,
start=1, end=200, step=1)
return column([title, self.sld_lookback], sizing_mode='stretch_width')
def _apply_lookback_config(self):
3
View Source File : feature.py
License : MIT License
Project Creator : phurwicz
License : MIT License
Project Creator : phurwicz
def _setup_search_widgets(self):
"""
???+ note "Create similarity search widgets."
"""
self.search_sim = TextInput(
title=f"{self.__class__.PRIMARY_FEATURE} similarity search (enter URL)".capitalize(),
width_policy="fit",
height_policy="fit",
)
self.search_threshold = Slider(
start=0.0,
end=1.0,
value=0.9,
# fewer steps allowed because refreshing search result can be expensive
step=0.1,
title="Similarity threshold",
)
def _search_watch_widgets(self):
3
View Source File : test_callbacks.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_js_callback():
slider = Slider()
cb = CustomJS(code="foo();", args=dict(x=slider))
assert 'foo()' in cb.code
assert cb.args['x'] is slider
cb = CustomJS(code="foo();", args=dict(x=3))
assert 'foo()' in cb.code
assert cb.args['x'] == 3
with raises(AttributeError): # kwargs not supported
CustomJS(code="foo();", x=slider)
def test_py_callback():
3
View Source File : test_formatters.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_functickformatter_from_py_func_with_args():
slider = Slider()
def convert_to_minutes(x=slider):
return tick * 60 # noqa
formatter = FuncTickFormatter.from_py_func(convert_to_minutes)
js_code = pscript.py2js(convert_to_minutes, 'formatter')
function_wrapper = formatter.code.replace(js_code, '')
assert function_wrapper == "return formatter(x);\n"
assert formatter.args['x'] is slider
def test_functickformatter_bad_pyfunc_formats():
0
View Source File : visualiser.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : alexjonesphd
License : BSD 3-Clause "New" or "Revised" License
Project Creator : alexjonesphd
def explore(model, display='combined'):
""" Allows a user to explore the model outputs using Bokeh, using sliders to adjust predicted shape and texture variables.
This function will NOT run outside of a Jupyter Notebook.
Parameters
----------
model : an instance of the Modeller class on which .fit() has been called.
display : a string specifying the kind of data the user would like to see. Accepts 'texture' to just show texture changes or 'shape'
to visualise landmark deformation. The default argument visualises both shape and texture changing simultaneously.
"""
# Set up the notebook output
output_notebook()
def make_document(doc):
""" Internal function to create the document for visualisation. Hidden from users who need only call outer function with a fitted model.
"""
# Use the model to predict an average representationof data, using the mean value of each predictor
centred_predict = model.master_data_frame.mean().to_dict()
_, final_im, shape, texture_im = model.predict(**centred_predict)
# Call the image tidy function to change RGB texture to RGBA
final_im = _image_tidy(final_im)
texture = _image_tidy(texture_im)
# Set up the plot for the shape coordinates ###############################
# Define a column data source
shape_source = ColumnDataSource( {'x': shape[:,0], 'y': shape[:,1]} )
# Instantiate plot object for shape coordinates
shape_plot = figure(title = 'Predicted Shape', y_range = (900, 0), x_range = (0, 900))
shape_plot.cross('x', 'y', size = 10, source = shape_source)
# Define hover tool and add to plot
hover = HoverTool( tooltips = [('x', '@x'), ('y', '@y')] )
shape_plot.add_tools(hover)
###########################################################################
# Set up a column data source for the actual warped face ##################
# Define a column data source
warp_source = ColumnDataSource( {'image': [final_im]} )
# Instantiate plot object for warped image - add a constant extra few pixels to make sure image is not squashed to window
warp_image_plot = figure(title = 'Predicted Face', y_range = (0, model.image_dims[0]+150), x_range = (0, model.image_dims[1]+150))
warp_image_plot.image_rgba(image = 'image', x=0, y=0, dw=model.image_dims[1], dh=model.image_dims[0], source=warp_source)
# Set up a column data source for the texture-only face ###################
# Define a column data source
texture_source = ColumnDataSource( { 'image': [texture] } )
# Instantiate plot object for shape-free face
image_plot = figure(title = 'Predicted Texture', y_range = (0, model.image_dims[0]+150), x_range = (0, model.image_dims[1]+150) )
image_plot.image_rgba( image = 'image', x=0, y=0, dw=model.image_dims[1], dh=model.image_dims[0], source=texture_source)
###########################################################################
# Define the internal callback function to update objects interactively
def callback(attr, old, new):
""" Bokeh callback for updating glyphs
"""
# Iterate over the traits, get their title and their value and store in the dictionary
predictor_dict = {}
for slide in sliders:
predictor_dict[ slide.title ] = slide.value
# Use this dictionary to feed to the model's predict method, generating new ouput to show
_, final_im, shape, texture = model.predict(**predictor_dict)
# Fix the images for show
final_im = _image_tidy(final_im)
texture = _image_tidy(texture)
# Update data sources with the new information
shape_source.data = {'x':shape[:,0], 'y':shape[:,1]}
warp_source.data = {'image':[final_im]}
texture_source.data = {'image':[texture]}
###########################################################################
# Set up sliders to alter properties
sliders = []
for trait in model.trait_list:
# Get the middle and far end points by applying mean, min, and max, and rounding to zero
avg, mini, maxi = model.master_data_frame[trait].apply(['mean', 'min', 'max']).round()
slider = Slider(title = trait, start = mini, end = maxi, step = 1, value = avg)
slider.on_change('value', callback)
sliders.append(slider)
###########################################################################
# Set layout according to specification of user, extract from dictionary
layout_dict = {'combined':warp_image_plot, 'texture':image_plot, 'shape':shape_plot}
layout = row([widgetbox(sliders), layout_dict[display]])
# Update and add to curdoc
doc.add_root(layout)
# Initialise server with the make_document function defined above
show(make_document)
0
View Source File : plotting.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
def dendrogram(D, figargs=None):
'''Creates a dendrogram plot.
This plot can show full structure of a given dendrogram.
Args:
D (henchman.selection.Dendrogram): An initialized dendrogram object
Examples:
>>> from henchman.selection import Dendrogram
>>> from henchman.plotting import show
>>> import henchman.plotting as hplot
>>> D = Dendrogram(X)
>>> plot = hplot.dendrogram(D)
>>> show(plot)
'''
if figargs is None:
return lambda figargs: dendrogram(D, figargs=figargs)
G = nx.Graph()
vertices_source = ColumnDataSource(
pd.DataFrame({'index': D.columns.keys(),
'desc': list(D.columns.values())}))
edges_source = ColumnDataSource(
pd.DataFrame(D.edges[0]).rename(
columns={1: 'end', 0: 'start'}))
step_source = ColumnDataSource(
pd.DataFrame({'step': [0],
'thresh': [D.threshlist[0]],
'components': [len(D.graphs[0])]}))
G.add_nodes_from([str(x) for x in vertices_source.data['index']])
G.add_edges_from(zip(
[str(x) for x in edges_source.data['start']],
[str(x) for x in edges_source.data['end']]))
graph_renderer = from_networkx(G, nx.circular_layout,
scale=1, center=(0, 0))
graph_renderer.node_renderer.data_source = vertices_source
graph_renderer.node_renderer.view = CDSView(source=vertices_source)
graph_renderer.edge_renderer.data_source = edges_source
graph_renderer.edge_renderer.view = CDSView(source=edges_source)
plot = Plot(plot_width=400, plot_height=400,
x_range=Range1d(-1.1, 1.1),
y_range=Range1d(-1.1, 1.1))
plot.title.text = "Feature Connectivity"
graph_renderer.node_renderer.glyph = Circle(
size=5, fill_color=Spectral4[0])
graph_renderer.node_renderer.selection_glyph = Circle(
size=15, fill_color=Spectral4[2])
graph_renderer.edge_renderer.data_source = edges_source
graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC",
line_alpha=0.6,
line_width=.5)
graph_renderer.edge_renderer.selection_glyph = MultiLine(
line_color=Spectral4[2],
line_width=3)
graph_renderer.node_renderer.hover_glyph = Circle(
size=5,
fill_color=Spectral4[1])
graph_renderer.selection_policy = NodesAndLinkedEdges()
graph_renderer.inspection_policy = NodesAndLinkedEdges()
plot.renderers.append(graph_renderer)
plot.add_tools(
HoverTool(tooltips=[("feature", "@desc"),
("index", "@index"), ]),
TapTool(),
BoxZoomTool(),
SaveTool(),
ResetTool())
plot = _modify_plot(plot, figargs)
if figargs['static']:
return plot
def modify_doc(doc, D, figargs):
data_table = DataTable(source=step_source,
columns=[TableColumn(field='step',
title='Step'),
TableColumn(field='thresh',
title='Thresh'),
TableColumn(field='components',
title='Components')],
height=50, width=400)
def callback(attr, old, new):
try:
edges = D.edges[slider.value]
edges_source.data = ColumnDataSource(
pd.DataFrame(edges).rename(columns={1: 'end',
0: 'start'})).data
step_source.data = ColumnDataSource(
{'step': [slider.value],
'thresh': [D.threshlist[slider.value]],
'components': [len(D.graphs[slider.value])]}).data
except Exception as e:
print(e)
slider = Slider(start=0,
end=(len(D.edges) - 1),
value=0,
step=1,
title="Step")
slider.on_change('value', callback)
doc.add_root(column(slider, data_table, plot))
return lambda doc: modify_doc(doc, D, figargs)
def f1(X, y, model, n_precs=1000, n_splits=1, figargs=None):
0
View Source File : plotting.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
def _piechart_widgets(col, sort, mergepast, drop_n, callback):
if sort:
active = [0]
else:
active = []
sorted_button = CheckboxGroup(
labels=["Sorted"], active=active)
sorted_button.on_change('active', callback)
merge_slider = Slider(start=1, end=col.nunique(),
value=mergepast or col.nunique(), step=1,
title="Merge Slider")
merge_slider.on_change('value', callback)
drop_slider = Slider(start=0, end=col.nunique(),
value=drop_n or 0, step=1,
title="Drop Slider")
drop_slider.on_change('value', callback)
return sorted_button, merge_slider, drop_slider
# Timeseries Utilities #
def _make_timeseries_source(col_1, col_2, col_max=None, col_min=None, n_bins=10, aggregate='mean'):
0
View Source File : plotting.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
def _timeseries_widgets(col_1, col_2, col_max, col_min, n_bins, aggregate, callback):
col_1_time = pd.to_datetime(col_1)
if col_max is None:
col_max = col_1_time.max()
if col_min is None:
col_min = col_1_time.min()
slider = Slider(start=1, end=100,
value=n_bins, step=1,
title="Bins")
slider.on_change('value', callback)
range_select = DateRangeSlider(start=col_1_time.min(),
end=col_1_time.max(),
value=(col_min,
col_max),
step=1, title='Range', format='%R %F')
range_select.on_change('value', callback)
dropdown = Dropdown(value=aggregate, label=aggregate,
button_type="default",
menu=[('mean', 'mean'),
('count', 'count'),
('sum', 'sum'),
('max', 'max'),
('min', 'min')])
dropdown.on_change('value', callback)
return slider, range_select, dropdown
# Histogram Utilities #
def _make_histogram_source(col, y, n_bins, col_max, col_min, normalized):
0
View Source File : plotting.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
License : BSD 3-Clause "New" or "Revised" License
Project Creator : FeatureLabs
def _histogram_widgets(col, y, n_bins, col_max, col_min, callback):
if col_max is None:
col_max = col.max()
if col_min is None:
col_min = col.min()
slider = Slider(start=1, end=100, value=n_bins, step=1, title="Bins")
slider.on_change('value', callback)
range_select = RangeSlider(start=col.min(),
end=col.max(),
value=(col_min, col_max),
step=5, title='Histogram Range')
range_select.on_change('value', callback)
return slider, range_select
# Scatter Utilities #
def _make_scatter_source(col_1, col_2, cat=None, label=None, aggregate='last'):
0
View Source File : figures.py
License : GNU General Public License v3.0
Project Creator : gotzl
License : GNU General Public License v3.0
Project Creator : gotzl
def getLapSlider(ds, p0, r0, hover0, view):
# Enable selection update with slider
slider = Slider(start=0, end=len(ds.data['dist_lap']),value=0, step=50)
# React on changes of the selection in the datasource. Display tooltips at the position of the selected point.
code = """
let ind = slider.value;
let x = source.data.dist_lap[ind];
let y = source.data.speedkmh[ind];
function get_view(views, id) {
for (const [key, value] of views.entries()) {
if (key.id === id) {
return value;
}
}
}
let fig_view = get_view(Bokeh.index["tabs"]._child_views, view);
if (view === "trackmap")
fig_view = get_view(fig_view.child_views[0]
.child_views[1]
._child_views, figure.id);
if (view === "lapsdelta") {
var lapsdelta_view = fig_view.child_views;
fig_view = get_view(lapsdelta_view[lapsdelta_view.length-1]._child_views, figure.id);
}
let hover_view = get_view(fig_view.tool_views, hovertool.id);
let renderer_view = get_view(fig_view.renderer_views, renderer.id);
let xs = renderer_view.xscale.compute(x);
let ys = renderer_view.yscale.compute(y);
hover_view._inspect(xs, ys);
source.selected.indices = [ind]; // this triggers c0/c1/cr selected glyph
"""
callback = CustomJS(args=dict(hovertool=hover0,
source=ds,
figure=p0,
view=view,
slider=slider,
renderer=r0), code=code)
slider.js_on_change('value', callback)
return slider
def getLapControls(ds, slider):
0
View Source File : config.py
License : GNU General Public License v3.0
Project Creator : happydasch
License : GNU General Public License v3.0
Project Creator : happydasch
def _create_aspectratio_config(self):
self.sld_obs_ar = None
self.sld_data_ar = None
self.sld_vol_ar = None
self.sld_ind_ar = None
title = Paragraph(
text='Aspect Ratios',
css_classes=['config-title'])
self.sld_obs_ar = Slider(
title='Observer Aspect Ratio',
value=self.scheme.obs_aspectratio,
start=0.1, end=20.0, step=0.1)
self.sld_data_ar = Slider(
title='Data Aspect Ratio',
value=self.scheme.data_aspectratio,
start=0.1, end=20.0, step=0.1)
self.sld_vol_ar = Slider(
title='Volume Aspect Ratio',
value=self.scheme.vol_aspectratio,
start=0.1, end=20.0, step=0.1)
self.sld_ind_ar = Slider(
title='Indicator Aspect Ratio',
value=self.scheme.ind_aspectratio,
start=0.1, end=20.0, step=0.1)
return column([title,
self.sld_obs_ar,
self.sld_data_ar,
self.sld_vol_ar,
self.sld_ind_ar])
def _apply_aspectratio_config(self):
0
View Source File : test_links.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : holoviz
License : BSD 3-Clause "New" or "Revised" License
Project Creator : holoviz
def test_bkwidget_hvplot_links(document, comm):
from bokeh.models import Slider
bokeh_widget = Slider(value=5, start=1, end=10, step=1e-1)
points1 = hv.Points([1, 2, 3])
Link(bokeh_widget, points1, properties={'value': 'glyph.size'})
row = Row(points1, bokeh_widget)
model = row.get_root(document, comm=comm)
hv_views = row.select(HoloViews)
assert len(hv_views) == 1
slider = bokeh_widget
scatter = hv_views[0]._plots[model.ref['id']][0].handles['glyph']
link_customjs = slider.js_property_callbacks['change:value'][-1]
assert link_customjs.args['source'] is slider
assert link_customjs.args['target'] is scatter
code = """
var value = source['value'];
value = value;
value = value;
try {
var property = target.properties['size'];
if (property !== undefined) { property.validate(value); }
} catch(err) {
console.log('WARNING: Could not set size on target, raised error: ' + err);
return;
}
try {
target['size'] = value;
} catch(err) {
console.log(err)
}
"""
assert link_customjs.code == code
def test_bkwidget_bkplot_links(document, comm):
0
View Source File : test_links.py
License : BSD 3-Clause "New" or "Revised" License
Project Creator : holoviz
License : BSD 3-Clause "New" or "Revised" License
Project Creator : holoviz
def test_bkwidget_bkplot_links(document, comm):
from bokeh.models import Slider
bokeh_widget = Slider(value=5, start=1, end=10, step=1e-1)
bokeh_fig = figure()
scatter = bokeh_fig.scatter([1, 2, 3], [1, 2, 3])
Link(bokeh_widget, scatter, properties={'value': 'glyph.size'})
row = Row(bokeh_fig, bokeh_widget)
row.get_root(document, comm=comm)
slider = bokeh_widget
link_customjs = slider.js_property_callbacks['change:value'][-1]
assert link_customjs.args['source'] is slider
assert link_customjs.args['target'] is scatter.glyph
code = """
var value = source['value'];
value = value;
value = value;
try {
var property = target.properties['size'];
if (property !== undefined) { property.validate(value); }
} catch(err) {
console.log('WARNING: Could not set size on target, raised error: ' + err);
return;
}
try {
target['size'] = value;
} catch(err) {
console.log(err)
}
"""
assert link_customjs.code == code
def test_widget_bkplot_link(document, comm):
0
View Source File : tax_rate.py
License : GNU Affero General Public License v3.0
Project Creator : iza-institute-of-labor-economics
License : GNU Affero General Public License v3.0
Project Creator : iza-institute-of-labor-economics
def tax_rate(plot_dict, data): # noqa: U100
def make_dataset(sel_year, tax_rate_dict_full):
dataset = tax_rate_dict_full[sel_year]
return ColumnDataSource(dataset)
def setup_plot(src):
p = figure(plot_width=800, plot_height=400, y_range=(-0.01, 0.5),)
taxplot_dict = {
"tax_rate": {"label": "Average Tax Rate", "color": "blue"},
"overall_tax_rate": {
"label": "Average Tax Rate incl. Soli",
"color": "black",
},
"marginal_rate": {"label": "Marginal Tax Rate", "color": "red"},
"overall_marginal_rate": {
"label": "Marginal Tax Rate incl. Soli",
"color": "green",
},
}
for yvar in taxplot_dict.keys():
p.line(
x="income",
y=yvar,
source=src,
line_width=2,
line_color=taxplot_dict[yvar]["color"],
legend_label=taxplot_dict[yvar]["label"],
)
plot = plotstyle(p, plot_dict)
return plot
def update_plot(attr, old, new): # noqa: U100
sel_year = year_selection.value
new_src = make_dataset(sel_year, tax_rate_dict_full)
src.data.update(new_src.data)
tax_rate_dict_full = data
year_selection = Slider(start=2002, end=2021, value=2021, step=1, title="Year")
year_selection.on_change("value", update_plot)
src = make_dataset(2021, tax_rate_dict_full)
p = setup_plot(src)
description = Div(text=plot_dict["description"], width=800,)
layout = column(description, year_selection, p)
tab = Panel(child=layout, title="Tax rate per taxable income")
return tab
0
View Source File : wohngeld.py
License : GNU Affero General Public License v3.0
Project Creator : iza-institute-of-labor-economics
License : GNU Affero General Public License v3.0
Project Creator : iza-institute-of-labor-economics
def wohngeld(plot_dict, data):
def make_dataset(sel_year, hh_size, wg_dict):
dataset = wg_dict[sel_year][hh_size]
heatmap_source = pd.DataFrame(
dataset.stack(), columns=["Wohngeld"]
).reset_index()
heatmap_source.columns = ["Miete", "Einkommen", "Wohngeld"]
return ColumnDataSource(heatmap_source)
def update_plot(attr, old, new): # noqa: U100
sel_year = [1992, 2001, 2009, 2016, 2020, 2021][year_selection.active]
hh_size = hh_size_selection.value
new_src = make_dataset(sel_year, hh_size, wg_dict)
src.data.update(new_src.data)
def setup_plot(src):
"""
Create the heatmap plot.
src: ColumnDataSource
"""
# Prepare a color pallete and color mapper
mapper = LinearColorMapper(
# force 0 to be mapped with white color
palette=tuple(
itertools.chain(["#FFFFFF"], tuple(reversed(Viridis256[1:])))
),
low=0,
high=1000,
)
# Actual figure setup
p = figure(
plot_width=800,
plot_height=400,
x_range=(src.data["Miete"].min(), src.data["Miete"].max()),
y_range=(src.data["Einkommen"].min(), src.data["Einkommen"].max()),
tools="hover",
tooltips="Housing Benefit: @Wohngeld{0.0f}€",
)
p.rect(
x="Miete",
y="Einkommen",
width=25,
height=src.data["Einkommen"][1] - src.data["Einkommen"][0],
source=src,
line_color=transform("Wohngeld", mapper),
fill_color=transform("Wohngeld", mapper),
)
color_bar = ColorBar(
color_mapper=mapper,
location=(0, 0),
ticker=BasicTicker(desired_num_ticks=20),
formatter=NumeralTickFormatter(format="0€"),
label_standoff=12,
)
p.add_layout(color_bar, "right")
plot = plotstyle(p, plot_dict)
return plot
wg_dict = data
year_selection = RadioButtonGroup(
labels=[str(i) for i in [1992, 2001, 2009, 2016, 2020, 2021]], active=5
)
year_selection.on_change("active", update_plot)
hh_size_selection = Slider(start=1, end=12, value=4, step=1, title="Household Size")
hh_size_selection.on_change("value", update_plot)
src = make_dataset(2021, 4, wg_dict)
p = setup_plot(src)
description = Div(text=plot_dict["description"], width=1000,)
year_label = Div(text="Year")
layout = column(description, year_label, year_selection, hh_size_selection, p)
tab = Panel(child=layout, title="Housing benefits")
return tab
0
View Source File : interact.py
License : MIT License
Project Creator : nasa
License : MIT License
Project Creator : nasa
def show_interact_widget(tpf, notebook_url='localhost:8888',
max_cadences=30000,
aperture_mask='pipeline',
exported_filename=None):
"""Display an interactive Jupyter Notebook widget to inspect the pixel data.
The widget will show both the lightcurve and pixel data. The pixel data
supports pixel selection via Bokeh tap and box select tools in an
interactive javascript user interface.
Note: at this time, this feature only works inside an active Jupyter
Notebook, and tends to be too slow when more than ~30,000 cadences
are contained in the TPF (e.g. short cadence data).
Parameters
----------
tpf : lightkurve.TargetPixelFile
Target Pixel File to interact with
notebook_url: str
Location of the Jupyter notebook page (default: "localhost:8888")
When showing Bokeh applications, the Bokeh server must be
explicitly configured to allow connections originating from
different URLs. This parameter defaults to the standard notebook
host and port. If you are running on a different location, you
will need to supply this value for the application to display
properly. If no protocol is supplied in the URL, e.g. if it is
of the form "localhost:8888", then "http" will be used.
max_cadences : int
Raise a RuntimeError if the number of cadences shown is larger than
this value. This limit helps keep browsers from becoming unresponsive.
"""
try:
import bokeh
if bokeh.__version__[0] == '0':
warnings.warn("interact() requires Bokeh version 1.0 or later", LightkurveWarning)
except ImportError:
log.error("The interact() tool requires the `bokeh` Python package; "
"you can install bokeh using e.g. `conda install bokeh`.")
return None
aperture_mask = tpf._parse_aperture_mask(aperture_mask)
if exported_filename is None:
exported_filename = make_default_export_name(tpf)
try:
exported_filename = str(exported_filename)
except:
log.error('Invalid input filename type for interact()')
raise
if ('.fits' not in exported_filename.lower()):
exported_filename += '.fits'
lc = tpf.to_lightcurve(aperture_mask=aperture_mask)
npix = tpf.flux[0, :, :].size
pixel_index_array = np.arange(0, npix, 1).reshape(tpf.flux[0].shape)
# Bokeh cannot handle many data points
# https://github.com/bokeh/bokeh/issues/7490
if len(lc.cadenceno) > max_cadences:
msg = 'Interact cannot display more than {} cadences.'
raise RuntimeError(msg.format(max_cadences))
def create_interact_ui(doc):
# The data source includes metadata for hover-over tooltips
lc_source = prepare_lightcurve_datasource(lc)
tpf_source = prepare_tpf_datasource(tpf, aperture_mask)
# Create the lightcurve figure and its vertical marker
fig_lc, vertical_line = make_lightcurve_figure_elements(lc, lc_source)
# Create the TPF figure and its stretch slider
pedestal = np.nanmin(tpf.flux)
fig_tpf, stretch_slider = make_tpf_figure_elements(tpf, tpf_source,
pedestal=pedestal,
fiducial_frame=0)
# Helper lookup table which maps cadence number onto flux array index.
tpf_index_lookup = {cad: idx for idx, cad in enumerate(tpf.cadenceno)}
# Interactive slider widgets and buttons to select the cadence number
cadence_slider = Slider(start=np.min(tpf.cadenceno),
end=np.max(tpf.cadenceno),
value=np.min(tpf.cadenceno),
step=1,
title="Cadence Number",
width=490)
r_button = Button(label=">", button_type="default", width=30)
l_button = Button(label=" < ", button_type="default", width=30)
export_button = Button(label="Save Lightcurve",
button_type="success", width=120)
message_on_save = Div(text=' ',width=600, height=15)
# Callbacks
def update_upon_pixel_selection(attr, old, new):
"""Callback to take action when pixels are selected."""
# Check if a selection was "re-clicked", then de-select
if ((sorted(old) == sorted(new)) & (new != [])):
# Trigger recursion
tpf_source.selected.indices = new[1:]
if new != []:
selected_indices = np.array(new)
selected_mask = np.isin(pixel_index_array, selected_indices)
lc_new = tpf.to_lightcurve(aperture_mask=selected_mask)
lc_source.data['flux'] = lc_new.flux
ylims = get_lightcurve_y_limits(lc_source)
fig_lc.y_range.start = ylims[0]
fig_lc.y_range.end = ylims[1]
else:
lc_source.data['flux'] = lc.flux * 0.0
fig_lc.y_range.start = -1
fig_lc.y_range.end = 1
message_on_save.text = " "
export_button.button_type = "success"
def update_upon_cadence_change(attr, old, new):
"""Callback to take action when cadence slider changes"""
if new in tpf.cadenceno:
frameno = tpf_index_lookup[new]
fig_tpf.select('tpfimg')[0].data_source.data['image'] = \
[tpf.flux[frameno, :, :] - pedestal]
vertical_line.update(location=tpf.time[frameno])
else:
fig_tpf.select('tpfimg')[0].data_source.data['image'] = \
[tpf.flux[0, :, :] * np.NaN]
lc_source.selected.indices = []
def go_right_by_one():
"""Step forward in time by a single cadence"""
existing_value = cadence_slider.value
if existing_value < np.max(tpf.cadenceno):
cadence_slider.value = existing_value + 1
def go_left_by_one():
"""Step back in time by a single cadence"""
existing_value = cadence_slider.value
if existing_value > np.min(tpf.cadenceno):
cadence_slider.value = existing_value - 1
def save_lightcurve():
"""Save the lightcurve as a fits file with mask as HDU extension"""
if tpf_source.selected.indices != []:
selected_indices = np.array(tpf_source.selected.indices)
selected_mask = np.isin(pixel_index_array, selected_indices)
lc_new = tpf.to_lightcurve(aperture_mask=selected_mask)
lc_new.to_fits(exported_filename, overwrite=True,
flux_column_name='SAP_FLUX',
aperture_mask=selected_mask.astype(np.int),
SOURCE='lightkurve interact',
NOTE='custom mask',
MASKNPIX=np.nansum(selected_mask))
if message_on_save.text == " ":
text = ' < font color="black"> < i>Saved file {} < /i> < /font>'
message_on_save.text = text.format(exported_filename)
export_button.button_type = "success"
else:
text = ' < font color="gray"> < i>Saved file {} < /i> < /font>'
message_on_save.text = text.format(exported_filename)
else:
text = ' < font color="gray"> < i>No pixels selected, no mask saved < /i> < /font>'
export_button.button_type = "warning"
message_on_save.text = text
def jump_to_lightcurve_position(attr, old, new):
if new != []:
cadence_slider.value = lc.cadenceno[new[0]]
# Map changes to callbacks
r_button.on_click(go_right_by_one)
l_button.on_click(go_left_by_one)
tpf_source.selected.on_change('indices', update_upon_pixel_selection)
lc_source.selected.on_change('indices', jump_to_lightcurve_position)
export_button.on_click(save_lightcurve)
cadence_slider.on_change('value', update_upon_cadence_change)
# Layout all of the plots
sp1, sp2, sp3, sp4 = (Spacer(width=15), Spacer(width=30),
Spacer(width=80), Spacer(width=60))
widgets_and_figures = layout([fig_lc, fig_tpf],
[l_button, sp1, r_button, sp2,
cadence_slider, sp3, stretch_slider],
[export_button, sp4, message_on_save])
doc.add_root(widgets_and_figures)
output_notebook(verbose=False, hide_banner=True)
return show(create_interact_ui, notebook_url=notebook_url)
def show_skyview_widget(tpf, notebook_url='localhost:8888', magnitude_limit=18):
0
View Source File : interact_bls.py
License : MIT License
Project Creator : nasa
License : MIT License
Project Creator : nasa
def show_interact_widget(lc, notebook_url='localhost:8888', minimum_period=None,
maximum_period=None, resolution=2000):
"""Show the BLS interact widget.
Parameters
----------
notebook_url: str
Location of the Jupyter notebook page (default: "localhost:8888")
When showing Bokeh applications, the Bokeh server must be
explicitly configured to allow connections originating from
different URLs. This parameter defaults to the standard notebook
host and port. If you are running on a different location, you
will need to supply this value for the application to display
properly. If no protocol is supplied in the URL, e.g. if it is
of the form "localhost:8888", then "http" will be used.
minimum_period : float or None
Minimum period to assess the BLS to. If None, default value of 0.3 days
will be used.
maximum_period : float or None
Maximum period to evaluate the BLS to. If None, the time coverage of the
lightcurve / 4 will be used.
resolution : int
Number of points to use in the BLS panel. Lower this value to have a faster
but less accurate compute time. You can also vary this value using the
Resolution Slider.
"""
try:
import bokeh
if bokeh.__version__[0] == '0':
warnings.warn("interact_bls() requires Bokeh version 1.0 or later", LightkurveWarning)
except ImportError:
log.error("The interact_bls() tool requires the `bokeh` package; "
"you can install bokeh using e.g. `conda install bokeh`.")
return None
try:
from astropy.timeseries import BoxLeastSquares
except ImportError:
try:
from astropy.stats import BoxLeastSquares
except ImportError:
log.error("The `interact_bls()` tool requires AstroPy v3.1 or later.")
def _create_interact_ui(doc, minp=minimum_period, maxp=maximum_period, resolution=resolution):
"""Create BLS interact user interface."""
if minp is None:
minp = 0.3
if maxp is None:
maxp = (lc.time[-1] - lc.time[0])/2
time_format = ''
if lc.time_format == 'bkjd':
time_format = ' - 2454833 days'
if lc.time_format == 'btjd':
time_format = ' - 2457000 days'
# Some sliders
duration_slider = Slider(start=0.01,
end=0.5,
value=0.05,
step=0.01,
title="Duration [Days]",
width=400)
npoints_slider = Slider(start=500,
end=10000,
value=resolution,
step=100,
title="BLS Resolution",
width=400)
# Set up the period values, BLS model and best period
period_values = np.logspace(np.log10(minp), np.log10(maxp), npoints_slider.value)
period_values = period_values[(period_values > duration_slider.value) &
(period_values < maxp)]
model = BoxLeastSquares(lc.time, lc.flux)
result = model.power(period_values, duration_slider.value)
loc = np.argmax(result.power)
best_period = result.period[loc]
best_t0 = result.transit_time[loc]
# Some Buttons
double_button = Button(label="Double Period", button_type="danger", width=100)
half_button = Button(label="Half Period", button_type="danger", width=100)
text_output = Paragraph(text="Period: {} days, T0: {}{}".format(
np.round(best_period, 7),
np.round(best_t0, 7), time_format),
width=350, height=40)
# Set up BLS source
bls_source = prepare_bls_datasource(result, loc)
bls_help_source = prepare_bls_help_source(bls_source, npoints_slider.value)
# Set up the model LC
mf = model.model(lc.time, best_period, duration_slider.value, best_t0)
mf /= np.median(mf)
mask = ~(convolve(np.asarray(mf == np.median(mf)), Box1DKernel(2)) > 0.9)
model_lc = LightCurve(lc.time[mask], mf[mask])
model_lc = model_lc.append(LightCurve([(lc.time[0] - best_t0) + best_period/2], [1]))
model_lc = model_lc.append(LightCurve([(lc.time[0] - best_t0) + 3*best_period/2], [1]))
model_lc_source = ColumnDataSource(data=dict(
time=np.sort(model_lc.time),
flux=model_lc.flux[np.argsort(model_lc.time)]))
# Set up the LC
nb = int(np.ceil(len(lc.flux)/5000))
lc_source = prepare_lightcurve_datasource(lc[::nb])
lc_help_source = prepare_lc_help_source(lc)
# Set up folded LC
nb = int(np.ceil(len(lc.flux)/10000))
f = lc.fold(best_period, best_t0)
f_source = prepare_folded_datasource(f[::nb])
f_help_source = prepare_f_help_source(f)
f_model_lc = model_lc.fold(best_period, best_t0)
f_model_lc = LightCurve([-0.5], [1]).append(f_model_lc)
f_model_lc = f_model_lc.append(LightCurve([0.5], [1]))
f_model_lc_source = ColumnDataSource(data=dict(
phase=f_model_lc.time,
flux=f_model_lc.flux))
def _update_light_curve_plot(event):
"""If we zoom in on LC plot, update the binning."""
mint, maxt = fig_lc.x_range.start, fig_lc.x_range.end
inwindow = (lc.time > mint) & (lc.time < maxt)
nb = int(np.ceil(inwindow.sum()/5000))
temp_lc = lc[inwindow]
lc_source.data = {'time': temp_lc.time[::nb],
'flux': temp_lc.flux[::nb]}
def _update_folded_plot(event):
loc = np.argmax(bls_source.data['power'])
best_period = bls_source.data['period'][loc]
best_t0 = bls_source.data['transit_time'][loc]
# Otherwise, we can just update the best_period index
minphase, maxphase = fig_folded.x_range.start, fig_folded.x_range.end
f = lc.fold(best_period, best_t0)
inwindow = (f.time > minphase) & (f.time < maxphase)
nb = int(np.ceil(inwindow.sum()/10000))
f_source.data = {'phase': f[inwindow].time[::nb],
'flux': f[inwindow].flux[::nb]}
# Function to update the widget
def _update_params(all=False, best_period=None, best_t0=None):
if all:
# If we're updating everything, recalculate the BLS model
minp, maxp = fig_bls.x_range.start, fig_bls.x_range.end
period_values = np.logspace(np.log10(minp), np.log10(maxp), npoints_slider.value)
ok = (period_values > duration_slider.value) & (period_values < maxp)
if ok.sum() == 0:
return
period_values = period_values[ok]
result = model.power(period_values, duration_slider.value)
ok = np.isfinite(result['power']) & np.isfinite(result['duration']) &\
np.isfinite(result['transit_time']) & np.isfinite(result['period'])
bls_source.data = dict(
period=result['period'][ok],
power=result['power'][ok],
duration=result['duration'][ok],
transit_time=result['transit_time'][ok])
loc = np.nanargmax(bls_source.data['power'])
best_period = bls_source.data['period'][loc]
best_t0 = bls_source.data['transit_time'][loc]
minpow, maxpow = bls_source.data['power'].min()*0.95, bls_source.data['power'].max()*1.05
fig_bls.y_range.start = minpow
fig_bls.y_range.end = maxpow
# Otherwise, we can just update the best_period index
minphase, maxphase = fig_folded.x_range.start, fig_folded.x_range.end
f = lc.fold(best_period, best_t0)
inwindow = (f.time > minphase) & (f.time < maxphase)
nb = int(np.ceil(inwindow.sum()/10000))
f_source.data = {'phase': f[inwindow].time[::nb],
'flux': f[inwindow].flux[::nb]}
mf = model.model(lc.time, best_period, duration_slider.value, best_t0)
mf /= np.median(mf)
mask = ~(convolve(np.asarray(mf == np.median(mf)), Box1DKernel(2)) > 0.9)
model_lc = LightCurve(lc.time[mask], mf[mask])
model_lc_source.data = {'time': np.sort(model_lc.time),
'flux': model_lc.flux[np.argsort(model_lc.time)]}
f_model_lc = model_lc.fold(best_period, best_t0)
f_model_lc = LightCurve([-0.5], [1]).append(f_model_lc)
f_model_lc = f_model_lc.append(LightCurve([0.5], [1]))
f_model_lc_source.data = {'phase': f_model_lc.time,
'flux': f_model_lc.flux}
vertical_line.update(location=best_period)
fig_folded.title.text = 'Period: {} days \t T0: {}{}'.format(
np.round(best_period, 7),
np.round(best_t0, 7), time_format)
text_output.text = "Period: {} days, \t T0: {}{}".format(
np.round(best_period, 7),
np.round(best_t0, 7), time_format)
# Callbacks
def _update_upon_period_selection(attr, old, new):
"""When we select a period we should just update a few things, but we should not recalculate model
"""
if len(new) > 0:
new = new[0]
best_period = bls_source.data['period'][new]
best_t0 = bls_source.data['transit_time'][new]
_update_params(best_period=best_period, best_t0=best_t0)
def _update_model_slider(attr, old, new):
"""If the duration slider is updated, then update the whole model set."""
_update_params(all=True)
def _update_model_slider_EVENT(event):
"""If we update the duration slider, we should update the whole model set.
This is the same as the _update_model_slider but it has a different call signature...
"""
_update_params(all=True)
def _double_period_event():
fig_bls.x_range.start *= 2
fig_bls.x_range.end *= 2
_update_params(all=True)
def _half_period_event():
fig_bls.x_range.start /= 2
fig_bls.x_range.end /= 2
_update_params(all=True)
# Help Hover Call Backs
def _update_folded_plot_help_reset(event):
f_help_source.data['phase'] = [(np.max(f.time) - np.min(f.time)) * 0.98 + np.min(f.time)]
f_help_source.data['flux'] = [(np.max(f.flux) - np.min(f.flux)) * 0.98 + np.min(f.flux)]
def _update_folded_plot_help(event):
f_help_source.data['phase'] = [(fig_folded.x_range.end - fig_folded.x_range.start) * 0.95 + fig_folded.x_range.start]
f_help_source.data['flux'] = [(fig_folded.y_range.end - fig_folded.y_range.start) * 0.95 + fig_folded.y_range.start]
def _update_lc_plot_help_reset(event):
lc_help_source.data['time'] = [(np.max(lc.time) - np.min(lc.time)) * 0.98 + np.min(lc.time)]
lc_help_source.data['flux'] = [(np.max(lc.flux) - np.min(lc.flux)) * 0.9 + np.min(lc.flux)]
def _update_lc_plot_help(event):
lc_help_source.data['time'] = [(fig_lc.x_range.end - fig_lc.x_range.start) * 0.95 + fig_lc.x_range.start]
lc_help_source.data['flux'] = [(fig_lc.y_range.end - fig_lc.y_range.start) * 0.9 + fig_lc.y_range.start]
def _update_bls_plot_help_event(event):
bls_help_source.data['period'] = [bls_source.data['period'][int(npoints_slider.value*0.95)]]
bls_help_source.data['power'] = [(np.max(bls_source.data['power']) - np.min(bls_source.data['power'])) * 0.98
+ np.min(bls_source.data['power'])]
def _update_bls_plot_help(attr, old, new):
bls_help_source.data['period'] = [bls_source.data['period'][int(npoints_slider.value*0.95)]]
bls_help_source.data['power'] = [(np.max(bls_source.data['power']) - np.min(bls_source.data['power'])) * 0.98
+ np.min(bls_source.data['power'])]
# Create all the figures.
fig_folded = make_folded_figure_elements(f, f_model_lc, f_source, f_model_lc_source, f_help_source)
fig_folded.title.text = 'Period: {} days \t T0: {}{}'.format(np.round(best_period, 7), np.round(best_t0, 5), time_format)
fig_bls, vertical_line = make_bls_figure_elements(result, bls_source, bls_help_source)
fig_lc = make_lightcurve_figure_elements(lc, model_lc, lc_source, model_lc_source, lc_help_source)
# Map changes
# If we click a new period, update
bls_source.selected.on_change('indices', _update_upon_period_selection)
# If we change the duration, update everything, including help button for BLS
duration_slider.on_change('value', _update_model_slider)
duration_slider.on_change('value', _update_bls_plot_help)
# If we increase resolution, update everything
npoints_slider.on_change('value', _update_model_slider)
# Make sure the vertical line always goes to the best period.
vertical_line.update(location=best_period)
# If we pan in the BLS panel, update everything
fig_bls.on_event(PanEnd, _update_model_slider_EVENT)
fig_bls.on_event(Reset, _update_model_slider_EVENT)
# If we pan in the LC panel, rebin the points
fig_lc.on_event(PanEnd, _update_light_curve_plot)
fig_lc.on_event(Reset, _update_light_curve_plot)
# If we pan in the Folded panel, rebin the points
fig_folded.on_event(PanEnd, _update_folded_plot)
fig_folded.on_event(Reset, _update_folded_plot)
# Deal with help button
fig_bls.on_event(PanEnd, _update_bls_plot_help_event)
fig_bls.on_event(Reset, _update_bls_plot_help_event)
fig_folded.on_event(PanEnd, _update_folded_plot_help)
fig_folded.on_event(Reset, _update_folded_plot_help_reset)
fig_lc.on_event(PanEnd, _update_lc_plot_help)
fig_lc.on_event(Reset, _update_lc_plot_help_reset)
# Buttons
double_button.on_click(_double_period_event)
half_button.on_click(_half_period_event)
# Layout the widget
doc.add_root(layout([
[fig_bls, fig_folded],
fig_lc,
[Spacer(width=70), duration_slider, Spacer(width=50), npoints_slider],
[Spacer(width=70), double_button, Spacer(width=70), half_button, Spacer(width=300), text_output]
]))
output_notebook(verbose=False, hide_banner=True)
return show(_create_interact_ui, notebook_url=notebook_url)
0
View Source File : geoplot.py
License : MIT License
Project Creator : PatrikHlobil
License : MIT License
Project Creator : PatrikHlobil
def geoplot( # noqa C901
gdf_in,
geometry_column="geometry",
figure=None,
figsize=None,
title="",
xlabel="Longitude",
ylabel="Latitude",
xlim=None,
ylim=None,
color="blue",
colormap=None,
colormap_uselog=False,
colormap_range=None,
category=None,
dropdown=None,
slider=None,
slider_range=None,
slider_name="",
show_colorbar=True,
colorbar_tick_format=None,
xrange=None,
yrange=None,
hovertool=True,
hovertool_columns=[],
hovertool_string=None,
simplify_shapes=None,
tile_provider="CARTODBPOSITRON_RETINA",
tile_provider_url=None,
tile_attribution="",
tile_alpha=1,
panning=True,
zooming=True,
toolbar_location="right",
show_figure=True,
return_figure=True,
return_html=False,
legend=True,
webgl=True,
**kwargs,
):
"""Doc-String: TODO"""
# Imports:
import bokeh.plotting
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
BoxZoomTool,
ColorBar,
ColumnDataSource,
GeoJSONDataSource,
HoverTool,
LinearColorMapper,
LogColorMapper,
LogTicker,
Select,
Slider,
WheelZoomTool,
)
from bokeh.models.callbacks import CustomJS
from bokeh.models.widgets import Dropdown
from bokeh.palettes import all_palettes
from bokeh.plotting import show
# Make a copy of the input geodataframe:
gdf = gdf_in.copy()
# Check layertypes:
if type(gdf) != pd.DataFrame:
layertypes = []
if "Point" in str(gdf.geom_type.unique()):
layertypes.append("Point")
if "Line" in str(gdf.geom_type.unique()):
layertypes.append("Line")
if "Polygon" in str(gdf.geom_type.unique()):
layertypes.append("Polygon")
if len(layertypes) > 1:
raise Exception(
f"Can only plot GeoDataFrames/Series with single type of geometry (either Point, Line or Polygon). Provided is a GeoDataFrame/Series with types: {layertypes}"
)
else:
layertypes = ["Point"]
# Get and check provided parameters for geoplot:
figure_options = {
"title": title,
"x_axis_label": xlabel,
"y_axis_label": ylabel,
"plot_width": 600,
"plot_height": 400,
"toolbar_location": toolbar_location,
"active_scroll": "wheel_zoom",
"x_axis_type": "mercator",
"y_axis_type": "mercator",
"match_aspect": True,
}
if figsize is not None:
width, height = figsize
figure_options["plot_width"] = width
figure_options["plot_height"] = height
if webgl:
figure_options["output_backend"] = "webgl"
if type(gdf) != pd.DataFrame:
# Convert GeoDataFrame to Web Mercator Projection:
gdf.to_crs(epsg=3857, inplace=True)
# Simplify shapes if wanted:
if isinstance(simplify_shapes, numbers.Number):
if layertypes[0] in ["Line", "Polygon"]:
gdf[geometry_column] = gdf[geometry_column].simplify(simplify_shapes)
elif simplify_shapes is not None:
raise ValueError(
" < simplify_shapes> parameter only accepts numbers or None."
)
# Check for category, dropdown or slider (choropleth map column):
category_options = 0
if category is not None:
category_options += 1
category_columns = [category]
if dropdown is not None:
category_options += 1
category_columns = dropdown
if slider is not None:
category_options += 1
category_columns = slider
if category_options > 1:
raise ValueError(
"Only one of < category>, < dropdown> or < slider> parameters is allowed to be used at once."
)
# Check for category (single choropleth plot):
if category is None:
pass
elif isinstance(category, (list, tuple)):
raise ValueError(
"For < category>, please provide an existing single column of the GeoDataFrame."
)
elif category in gdf.columns:
pass
else:
raise ValueError(
f"Could not find column '{category}' in GeoDataFrame. For < category>, please provide an existing single column of the GeoDataFrame."
)
# Check for dropdown (multiple choropleth plots via dropdown selection):
if dropdown is None:
pass
elif not isinstance(dropdown, (list, tuple)):
raise ValueError(
"For < dropdown>, please provide a list/tuple of existing columns of the GeoDataFrame."
)
else:
for col in dropdown:
if col not in gdf.columns:
raise ValueError(
f"Could not find column '{col}' for < dropdown> in GeoDataFrame. "
)
# Check for slider (multiple choropleth plots via slider selection):
if slider is None:
pass
elif not isinstance(slider, (list, tuple)):
raise ValueError(
"For < slider>, please provide a list/tuple of existing columns of the GeoDataFrame."
)
else:
for col in slider:
if col not in gdf.columns:
raise ValueError(
f"Could not find column '{col}' for < slider> in GeoDataFrame. "
)
if slider_range is not None:
if not isinstance(slider_range, Iterable):
raise ValueError(
" < slider_range> has to be a type that is iterable like list, tuple, range, ..."
)
else:
slider_range = list(slider_range)
if len(slider_range) != len(slider):
raise ValueError(
"The number of elements in < slider_range> has to be the same as in < slider>."
)
steps = []
for i in range(len(slider_range) - 1):
steps.append(slider_range[i + 1] - slider_range[i])
if len(set(steps)) > 1:
raise ValueError(
" < slider_range> has to have equal step size between each elements (like a range-object)."
)
else:
slider_step = steps[0]
slider_start = slider_range[0]
slider_end = slider_range[-1]
# Check colormap if either < category>, < dropdown> or < slider> is choosen:
if category_options == 1:
if colormap is None:
colormap = blue_colormap
elif isinstance(colormap, (tuple, list)):
if len(colormap) > 1:
pass
else:
raise ValueError(
f" < colormap> only accepts a list/tuple of at least two colors or the name of one of the following predefined colormaps (see also https://bokeh.pydata.org/en/latest/docs/reference/palettes.html ): {list(all_palettes.keys())}"
)
elif isinstance(colormap, str):
if colormap in all_palettes:
colormap = all_palettes[colormap]
colormap = colormap[max(colormap.keys())]
else:
raise ValueError(
f"Could not find < colormap> with name {colormap}. The following predefined colormaps are supported (see also https://bokeh.pydata.org/en/latest/docs/reference/palettes.html ): {list(all_palettes.keys())}"
)
else:
raise ValueError(
f" < colormap> only accepts a list/tuple of at least two colors or the name of one of the following predefined colormaps (see also https://bokeh.pydata.org/en/latest/docs/reference/palettes.html ): {list(all_palettes.keys())}"
)
else:
if isinstance(color, str):
colormap = [color]
elif color is None:
colormap = ["blue"]
else:
raise ValueError(
" < color> has to be a string specifying the fill_color of the map glyph."
)
# Check xlim & ylim:
if xlim is not None:
if isinstance(xlim, (tuple, list)):
if len(xlim) == 2:
xmin, xmax = xlim
for _ in [xmin, xmax]:
if not -180 < _ < = 180:
raise ValueError(
"Limits for x-axis (=Longitude) have to be between -180 and 180."
)
if not xmin < xmax:
raise ValueError("xmin has to be smaller than xmax.")
from pyproj import Transformer
transformer = Transformer.from_crs("epsg:4326", "epsg:3857")
xmin = transformer.transform(0, xmin)[0]
xmax = transformer.transform(0, xmax)[0]
figure_options["x_range"] = (xmin, xmax)
else:
raise ValueError(
"Limits for x-axis (=Longitude) have to be of form [xmin, xmax] with values between -180 and 180."
)
else:
raise ValueError(
"Limits for x-axis (=Longitude) have to be of form [xmin, xmax] with values between -180 and 180."
)
if ylim is not None:
if isinstance(ylim, (tuple, list)):
if len(ylim) == 2:
ymin, ymax = ylim
for _ in [ymin, ymax]:
if not -90 < _ < = 90:
raise ValueError(
"Limits for y-axis (=Latitude) have to be between -90 and 90."
)
if not ymin < ymax:
raise ValueError("ymin has to be smaller than ymax.")
from pyproj import Transformer
transformer = Transformer.from_crs("epsg:4326", "epsg:3857")
ymin = transformer.transform(ymin, 0)[1]
ymax = transformer.transform(ymax, 0)[1]
figure_options["y_range"] = (ymin, ymax)
else:
raise ValueError(
"Limits for y-axis (=Latitude) have to be of form [ymin, ymax] with values between -90 and 90."
)
else:
raise ValueError(
"Limits for y-axis (=Latitude) have to be of form [ymin, ymax] with values between -90 and 90."
)
# Create Figure to draw:
old_layout = None
if figure is None:
figure_options["x_axis_label"] = (
figure_options["x_axis_label"]
if figure_options["x_axis_label"] is not None
else "Longitute"
)
figure_options["y_axis_label"] = (
figure_options["y_axis_label"]
if figure_options["y_axis_label"] is not None
else "Latitude"
)
p = bokeh.plotting.figure(**figure_options)
# Add Tile Source as Background:
p = _add_backgroundtile(
p, tile_provider, tile_provider_url, tile_attribution, tile_alpha
)
elif isinstance(figure, type(bokeh.plotting.figure())):
p = figure
elif isinstance(figure, type(column())):
old_layout = figure
p = _get_figure(old_layout)
else:
raise ValueError(
"Parameter < figure> has to be of type bokeh.plotting.figure or bokeh.layouts.column."
)
for t in p.tools:
# Get ridd of zoom on axes:
if isinstance(t, WheelZoomTool):
t.zoom_on_axis = False
# Make sure that box zoom matches aspect:
if isinstance(t, BoxZoomTool):
t.match_aspect = True
# Hide legend if wanted:
legend_input = legend
if isinstance(legend, str):
pass
else:
legend = "GeoLayer"
# Define colormapper:
if len(colormap) == 1:
kwargs["fill_color"] = colormap[0]
elif category is not None:
# Check if category column is numerical:
if not issubclass(gdf[category].dtype.type, np.number):
raise NotImplementedError(
f" < category> plot only yet implemented for numerical columns. Column '{category}' is not numerical."
)
field = category
colormapper_options = {"palette": colormap}
if colormap_range is not None:
if not isinstance(colormap_range, (tuple, list)):
raise ValueError(
" < colormap_range> can only be 'None' or a tuple/list of form (min, max)."
)
elif len(colormap_range) == 2:
colormapper_options["low"] = colormap_range[0]
colormapper_options["high"] = colormap_range[1]
else:
colormapper_options["low"] = gdf[field].min()
colormapper_options["high"] = gdf[field].max()
if colormap_uselog:
colormapper = LogColorMapper(**colormapper_options)
else:
colormapper = LinearColorMapper(**colormapper_options)
kwargs["fill_color"] = {"field": "Colormap", "transform": colormapper}
if not isinstance(legend, str):
legend = str(field)
elif dropdown is not None:
# Check if all columns in dropdown selection are numerical:
for col in dropdown:
if not issubclass(gdf[col].dtype.type, np.number):
raise NotImplementedError(
f" < dropdown> plot only yet implemented for numerical columns. Column '{col}' is not numerical."
)
field = dropdown[0]
colormapper_options = {"palette": colormap}
if colormap_range is not None:
if not isinstance(colormap_range, (tuple, list)):
raise ValueError(
" < colormap_range> can only be 'None' or a tuple/list of form (min, max)."
)
elif len(colormap_range) == 2:
colormapper_options["low"] = colormap_range[0]
colormapper_options["high"] = colormap_range[1]
else:
colormapper_options["low"] = gdf[dropdown].min().min()
colormapper_options["high"] = gdf[dropdown].max().max()
if colormap_uselog:
colormapper = LogColorMapper(**colormapper_options)
else:
colormapper = LinearColorMapper(**colormapper_options)
kwargs["fill_color"] = {"field": "Colormap", "transform": colormapper}
legend = " " + field
elif slider is not None:
# Check if all columns in dropdown selection are numerical:
for col in slider:
if not issubclass(gdf[col].dtype.type, np.number):
raise NotImplementedError(
f" < slider> plot only yet implemented for numerical columns. Column '{col}' is not numerical."
)
field = slider[0]
colormapper_options = {"palette": colormap}
if colormap_range is not None:
if not isinstance(colormap_range, (tuple, list)):
raise ValueError(
" < colormap_range> can only be 'None' or a tuple/list of form (min, max)."
)
elif len(colormap_range) == 2:
colormapper_options["low"] = colormap_range[0]
colormapper_options["high"] = colormap_range[1]
else:
colormapper_options["low"] = gdf[slider].min().min()
colormapper_options["high"] = gdf[slider].max().max()
if colormap_uselog:
colormapper = LogColorMapper(**colormapper_options)
else:
colormapper = LinearColorMapper(**colormapper_options)
kwargs["fill_color"] = {"field": "Colormap", "transform": colormapper}
if not isinstance(legend, str):
legend = "Geolayer"
# Check that only hovertool_columns or hovertool_string is used:
if isinstance(hovertool_columns, (list, tuple, str)):
if len(hovertool_columns) > 0 and hovertool_string is not None:
raise ValueError(
"Either < hovertool_columns> or < hovertool_string> can be used, but not both at the same time."
)
else:
raise ValueError(
" < hovertool_columns> has to be a list of columns of the GeoDataFrame or the string 'all'."
)
if hovertool_string is not None:
hovertool_columns = "all"
# Check for Hovertool columns:
if hovertool:
if not isinstance(hovertool_columns, (list, tuple)):
if hovertool_columns == "all":
hovertool_columns = list(
filter(lambda col: col != geometry_column, gdf.columns)
)
else:
raise ValueError(
" < hovertool_columns> has to be a list of columns of the GeoDataFrame or the string 'all'."
)
elif len(hovertool_columns) == 0:
if category is not None:
hovertool_columns = [category]
elif dropdown is not None:
hovertool_columns = dropdown
elif slider is not None:
hovertool_columns = slider
else:
hovertool_columns = []
else:
for col in hovertool_columns:
if col not in gdf.columns:
raise ValueError(
f"Could not find columns '{col}' in GeoDataFrame. < hovertool_columns> has to be a list of columns of the GeoDataFrame or the string 'all'."
)
else:
if category is None:
hovertool_columns = []
else:
hovertool_columns = [category]
# Reduce DataFrame to needed columns:
if type(gdf) == pd.DataFrame:
gdf["Geometry"] = 0
additional_columns = ["x", "y"]
else:
additional_columns = [geometry_column]
for kwarg, value in kwargs.items():
if isinstance(value, Hashable):
if value in gdf.columns:
additional_columns.append(value)
if category_options == 0:
gdf = gdf[list(set(hovertool_columns) | set(additional_columns))]
else:
gdf = gdf[
list(
set(hovertool_columns) | set(category_columns) | set(additional_columns)
)
]
gdf["Colormap"] = gdf[field]
field = "Colormap"
# Create GeoJSON DataSource for Plot:
if type(gdf) != pd.DataFrame:
geo_source = GeoJSONDataSource(geojson=gdf.to_json())
else:
geo_source = gdf
# Draw Glyph on Figure:
layout = None
if "Point" in layertypes:
if "line_color" not in kwargs:
kwargs["line_color"] = kwargs["fill_color"]
glyph = p.scatter(
x="x", y="y", source=geo_source, legend_label=legend, **kwargs
)
if "Line" in layertypes:
if "line_color" not in kwargs:
kwargs["line_color"] = kwargs["fill_color"]
del kwargs["fill_color"]
glyph = p.multi_line(
xs="xs", ys="ys", source=geo_source, legend_label=legend, **kwargs
)
if "Polygon" in layertypes:
if "line_color" not in kwargs:
kwargs["line_color"] = "black"
# Creates from a geoDataFrame with Polygons and Multipolygons a Pandas DataFrame
# with x any y columns specifying the geometry of the Polygons:
geo_source = ColumnDataSource(
convert_geoDataFrame_to_patches(gdf, geometry_column)
)
# Plot polygons:
glyph = p.multi_polygons(
xs="__x__", ys="__y__", source=geo_source, legend_label=legend, **kwargs
)
# Add hovertool:
if hovertool and (category_options == 1 or len(hovertool_columns) > 0):
my_hover = HoverTool(renderers=[glyph])
if hovertool_string is None:
my_hover.tooltips = [(str(col), "@{%s}" % col) for col in hovertool_columns]
else:
my_hover.tooltips = hovertool_string
p.add_tools(my_hover)
# Add colorbar:
if show_colorbar and category_options == 1:
colorbar_options = {
"color_mapper": colormapper,
"label_standoff": 12,
"border_line_color": None,
"location": (0, 0),
}
if colormap_uselog:
colorbar_options["ticker"] = LogTicker()
if colorbar_tick_format:
colorbar_options["formatter"] = get_tick_formatter(colorbar_tick_format)
colorbar = ColorBar(**colorbar_options)
p.add_layout(colorbar, "right")
# Add Dropdown Widget:
if dropdown is not None:
# Define Dropdown widget:
dropdown_widget = Select(
title="Select Choropleth Layer", options=list(zip(dropdown, dropdown))
)
# Define Callback for Dropdown widget:
callback = CustomJS(
args=dict(
dropdown_widget=dropdown_widget,
geo_source=geo_source,
legend=p.legend[0].items[0],
),
code="""
//Change selection of field for Colormapper for choropleth plot:
geo_source.data["Colormap"] = geo_source.data[dropdown_widget.value];
geo_source.change.emit();
//Change label of Legend:
legend.label["value"] = " " + dropdown_widget.value;
""",
)
dropdown_widget.js_on_change("value", callback)
# Add Dropdown widget above the plot:
if old_layout is None:
layout = column(dropdown_widget, p)
else:
layout = column(dropdown_widget, old_layout)
# Add Slider Widget:
if slider is not None:
if slider_range is None:
slider_start = 0
slider_end = len(slider) - 1
slider_step = 1
value2name = ColumnDataSource(
{
"Values": np.arange(
slider_start, slider_end + slider_step, slider_step
),
"Names": slider,
}
)
# Define Slider widget:
slider_widget = Slider(
start=slider_start,
end=slider_end,
value=slider_start,
step=slider_step,
title=slider_name,
)
# Define Callback for Slider widget:
callback = CustomJS(
args=dict(
slider_widget=slider_widget,
geo_source=geo_source,
value2name=value2name,
),
code="""
//Change selection of field for Colormapper for choropleth plot:
var slider_value = slider_widget.value;
var i;
for(i=0; i < value2name.data["Names"].length; i++)
{
if (value2name.data["Values"][i] == slider_value)
{
var name = value2name.data["Names"][i];
}
}
geo_source.data["Colormap"] = geo_source.data[name];
geo_source.change.emit();
""",
)
slider_widget.js_on_change("value", callback)
# Add Slider widget above the plot:
if old_layout is None:
layout = column(slider_widget, p)
else:
layout = column(slider_widget, old_layout)
# Hide legend if user wants:
if legend_input is False:
p.legend.visible = False
# Set click policy for legend:
p.legend.click_policy = "hide"
# Set panning option:
if panning is False:
p.toolbar.active_drag = None
# Set zooming option:
if zooming is False:
p.toolbar.active_scroll = None
# Display plot and if wanted return plot:
if layout is None:
if old_layout is None:
layout = p
else:
layout = old_layout
# Display plot if wanted
if show_figure:
show(layout)
# Return as (embeddable) HTML if wanted:
if return_html:
return embedded_html(layout)
# Return plot:
if return_figure:
return layout
0
View Source File : base.py
License : MIT License
Project Creator : phurwicz
License : MIT License
Project Creator : phurwicz
def value_patch_by_slider(self, col_original, col_patch, **kwargs):
"""
???+ note "Allow source values to be dynamically patched through a slider."
| Param | Type | Description |
| :--------------- | :----- | :--------------------------- |
| `col_original` | `str` | column of values before the patch |
| `col_patch` | `str` | column of list of values to use as patches |
| `**kwargs` | | forwarded to the slider |
[Reference](https://github.com/bokeh/bokeh/blob/2.4.2/examples/howto/patch_app.py)
"""
# add a patch slider to widgets, if none exist
if "patch_slider" not in self._dynamic_widgets:
slider = Slider(start=0, end=1, value=0, step=1, **kwargs)
slider.disabled = True
self._dynamic_widgets["patch_slider"] = slider
else:
slider = self._dynamic_widgets["patch_slider"]
# create a slider-adjusting callback exposed to the outside
def adjust_slider():
"""
Infer slider length from the number of patch values.
"""
num_patches = None
for _key, _df in self.dfs.items():
assert (
col_patch in _df.columns
), f"Subset {_key} expecting column {col_patch} among columns, got {_df.columns}"
# find all array lengths; note that the data subset can be empty
_num_patches_seen = _df[col_patch].apply(len).values
assert (
len(set(_num_patches_seen)) < = 1
), f"Expecting consistent number of patches, got {_num_patches_seen}"
_num_patches = _num_patches_seen[0] if _df.shape[0] > 0 else None
# if a previous subset has implied the number of patches, run a consistency check
if num_patches is None:
num_patches = _num_patches
else:
assert (
num_patches == _num_patches
), f"Conflicting number of patches: {num_patches} vs {_num_patches}"
assert num_patches >= 2, f"Expecting at least 2 patches, got {num_patches}"
slider.end = num_patches - 1
slider.disabled = False
self._dynamic_callbacks["adjust_patch_slider"] = adjust_slider
# create the callback for patching values
def update_patch(attr, old, new):
for _key, _df in self.dfs.items():
# calculate the patch corresponding to slider value
_value = [_arr[new] for _arr in _df[col_patch].values]
_slice = slice(_df.shape[0])
_patch = {col_original: [(_slice, _value)]}
self.sources[_key].patch(_patch)
slider.on_change("value", update_patch)
self._good(f"Patching {col_original} using {col_patch}")
def _mandatory_column_defaults(self):
0
View Source File : neural.py
License : MIT License
Project Creator : phurwicz
License : MIT License
Project Creator : phurwicz
def _setup_widgets(self):
"""
???+ note "Bokeh widgets for changing hyperparameters through user interaction."
"""
self.epochs_slider = Slider(start=1, end=50, value=1, step=1, title="# epochs")
self.loglr_slider = Slider(
title="learning rate",
start=1.0,
end=7.0,
value=self.__class__.DEFAULT_OPTIM_LOGLR,
step=0.1,
format=FuncTickFormatter(code="return Math.pow(0.1, tick).toFixed(8)"),
)
def update_lr(attr, old, new):
self._dynamic_params["optimizer"]["lr"] = 0.1**self.loglr_slider.value
self.loglr_slider.on_change("value", update_lr)
def _layout_widgets(self):
0
View Source File : main.py
License : MIT License
Project Creator : Psy-Fer
License : MIT License
Project Creator : Psy-Fer
def bkapp(doc):
global signal
global ut
global lt
global show_segs
show_segs = False
ut = 0
lt = 0
if signal.any():
ut = max(signal)
lt = min(signal)
source = ColumnDataSource(data={
'signal' : signal,
'position' : list(range(0,len(signal)))
})
p = figure()
p.line('position','signal', source=source)
p.add_tools(HoverTool(
tooltips=[
('signal', '@signal'),
('position', '@position'),
],
formatters={
'signal' : 'printf',
'position' : 'printf'
},
mode='vline'
))
renderer = p.multi_line([[1,1]], [[1,1]], line_width=4, alpha=0.5, color='green')
draw_tool = FreehandDrawTool(renderers=[renderer])
p.add_tools(draw_tool)
src = ColumnDataSource({
'x':[1,1,1], 'y':[1,1,1], 'width':[1,1,1], 'height':[1,1,1]
})
box_renderer = p.rect('x', 'y', 'width', 'height', fill_alpha=0.4, fill_color='orange', line_color='orange', source=src)
box_draw_tool = BoxEditTool(renderers=[box_renderer], empty_value=1, num_objects = 5)
p.add_tools(box_draw_tool)
ut_slider = Slider(start=lt, end=max(signal), value=max(signal), name='upper_thresh', step=1, title="Upper Threshold")
lt_slider = Slider(start=min(signal), end=ut, value=min(signal), name='lower_thresh', step=1, title="Lower Threshold")
def ut_callback(attr, old, new):
global signal
global ut
global lt
ut = new
new_signal = scale_outliers(signal, ut, lt)
source.data = {
'signal' : new_signal,
'position' : list(range(0,len(new_signal)))
}
update_segs()
def lt_callback(attr, old, new):
global signal
global ut
global lt
lt = new
new_signal = scale_outliers(signal, ut, lt)
source.data = {
'signal' : new_signal,
'position' : list(range(0,len(new_signal)))
}
update_segs()
ut_slider.on_change('value', ut_callback)
lt_slider.on_change('value', lt_callback)
segments = ColumnDataSource(data={
'top' : [1,1],
'bottom' : [1,1],
'left' : [1,1],
'right' : [1,1]
})
button = Toggle(label="View Segments", sizing_mode="scale_width")
def segment_handler(new):
global show_segs
show_segs = new
if not new:
segments.data = {
'top' : [1,1],
'bottom' : [1,1],
'left' : [1,1],
'right' : [1,1]
}
update_segs()
button.on_click(segment_handler)
err_slider = Slider(start=0, end=20, value=5, name='error', step=1, title="Allowable Error")
err_win_slider = Slider(start=0, end=100, value=50, name='err_win', step=1, title="Error Window Size")
min_win_slider = Slider(start=0, end=500, value=150, name='min_win', step=1, title="Minimum Window Size")
max_merge_slider = Slider(start=0, end=100, value=50, name='max_merge', step=1, title="Max Merge Distance")
stdev_scale_slider = Slider(start=0, end=5, value=0.75, name='stdev_scale', step=0.01, title="Standard Deviation Scale Factor")
stall_len_slider = Slider(start=0, end=5, value=0.25, name='stall_len', step=0.01, title="Stall Length")
p.quad(top='top',bottom='bottom',left='left',right='right',source=segments,fill_alpha=0.5,fill_color='pink',line_color='pink')
def err_callback(atrr, old, new):
global err
err = new
update_segs()
def err_win_callback(atrr, old, new):
global err_win
err_win = new
update_segs()
def min_win_callback(atrr, old, new):
global min_win
min_win = new
update_segs()
def max_merge_callback(atrr, old, new):
global max_merge
max_merge = new
update_segs()
def stdev_scale_callback(atrr, old, new):
global stdev_scale
stdev_scale = new
update_segs()
def stall_len_callback(atrr, old, new):
global stall_len
stall_len = new
update_segs()
def update_segs():
#need to take into account the modified signal- somehow access it?
global err
global err_win
global min_win
global max_merge
global stdev_scale
global stall_len
global ut
global lt
global show_segs
left = None
right = None
if show_segs:
sig = scale_outliers(signal, ut, lt)
if sig.any():
left, right = get_segs(sig, err, err_win, min_win, max_merge, stdev_scale, stall_len)
if left is not None and right is not None:
segments.data = {
'top' : np.full(len(left),1000),
'bottom' : np.full(len(left),0),
'left' : left,
'right' : right
}
else:
segments.data = {
'top' : [1,1],
'bottom' : [1,1],
'left' : [1,1],
'right' : [1,1]
}
err_slider.on_change('value', err_callback)
err_win_slider.on_change('value', err_win_callback)
min_win_slider.on_change('value', min_win_callback)
max_merge_slider.on_change('value', max_merge_callback)
stdev_scale_slider.on_change('value', stdev_scale_callback)
stall_len_slider.on_change('value', stall_len_callback)
doc.add_root(row(column(Spacer(height=10), ut_slider, lt_slider, Spacer(height=10), button, err_slider, err_win_slider, min_win_slider, max_merge_slider, stdev_scale_slider, stall_len_slider, Spacer(height=10), sizing_mode="stretch_height"), p, sizing_mode="stretch_both"))
doc.theme = Theme(filename="theme.yaml")
def bk_worker():
0
View Source File : test_callbacks.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_py_callback():
slider = Slider()
foo = None # fool pyflakes
def cb(x=slider):
foo()
cb = CustomJS.from_py_func(cb)
assert 'foo()' in cb.code
assert cb.args['x'] is slider
def cb(x=4):
foo()
cb = CustomJS.from_py_func(cb)
assert 'foo()' in cb.code
assert cb.args['x'] == 4
#-----------------------------------------------------------------------------
# Dev API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Private API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------
0
View Source File : test_formatters.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_functickformatter_from_coffeescript_with_args():
coffee_code = dedent("""
return slider.get("value") // 2 + tick
""")
slider = Slider()
formatter = FuncTickFormatter.from_coffeescript(code=coffee_code, args={"slider": slider})
assert formatter.code == dedent("""\
return Math.floor(slider.get("value") / 2) + tick;
""")
assert formatter.args == {"slider": slider}
#-----------------------------------------------------------------------------
# Dev API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Private API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------
0
View Source File : test_transforms.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_customjstransform_from_py_func_with_args():
slider = Slider()
def cosine(foo=slider):
from pscript import window
return window.Math.cos(x) # noqa
def v_cosine(foo=slider):
from pscript import window
return [window.Math.cos(x) for x in xs] # noqa
transform = CustomJSTransform.from_py_func(cosine, v_cosine)
assert transform.args['foo'] is slider
js_code = pscript.py2js(cosine, 'transformer')
function_wrapper = transform.func.replace(js_code, '')
assert function_wrapper == "return transformer(foo);\n"
v_js_code = pscript.py2js(v_cosine, 'transformer')
v_function_wrapper = transform.v_func.replace(v_js_code, '')
assert v_function_wrapper == "return transformer(foo);\n"
def test_customjstransform_bad_pyfunc_formats():
0
View Source File : test_transforms.py
License : MIT License
Project Creator : rthorst
License : MIT License
Project Creator : rthorst
def test_customjstransform_from_coffeescript_with_args():
code = "return foo.get('value') // 2 + x"
v_code = "return [foo.get('value') // 2 + x for x in xs]"
slider = Slider()
formatter = CustomJSTransform.from_coffeescript(func=code, v_func=v_code, args={"foo": slider})
assert formatter.func == dedent("""\
return Math.floor(foo.get('value') / 2) + x;
""")
assert formatter.v_func == dedent("""\
var x;
return [
(function () {
var i, len, results;
results = [];
for (i = 0, len = xs.length; i < len; i++) {
x = xs[i];
results.push(Math.floor(foo.get('value') / 2) + x);
}
return results;
})()
];
""")
assert formatter.args == {"foo": slider}
#-----------------------------------------------------------------------------
# Dev API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Private API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------