bokeh.models.LogTicker

Here are the examples of the python api bokeh.models.LogTicker taken from open source projects. By voting up you can indicate which examples are most useful and appropriate.

3 Examples 7

0 View Source File : interact.py
License : MIT License
Project Creator : nasa

def make_tpf_figure_elements(tpf, tpf_source, pedestal=0, fiducial_frame=None,
                             plot_width=370, plot_height=340):
    """Returns the lightcurve figure elements.

    Parameters
    ----------
    tpf : TargetPixelFile
        TPF to show.
    tpf_source : bokeh.plotting.ColumnDataSource
        TPF data source.
    fiducial_frame: int
        The tpf slice to start with by default, it is assumed the WCS
        is exact for this frame.
    pedestal: float
        A scalar value to be added to the TPF flux values, often to avoid
        taking the log of a negative number in colorbars


    Returns
    -------
    fig, stretch_slider : bokeh.plotting.figure.Figure, RangeSlider
    """
    if tpf.mission in ['Kepler', 'K2']:
        title = 'Pixel data (CCD {}.{})'.format(tpf.module, tpf.output)
    elif tpf.mission == 'TESS':
        title = 'Pixel data (Camera {}.{})'.format(tpf.camera, tpf.ccd)
    else:
        title = "Pixel data"

    fig = figure(plot_width=plot_width, plot_height=plot_height,
                 x_range=(tpf.column, tpf.column+tpf.shape[2]),
                 y_range=(tpf.row, tpf.row+tpf.shape[1]),
                 title=title, tools='tap,box_select,wheel_zoom,reset',
                 toolbar_location="below",
                 border_fill_color="whitesmoke")

    fig.yaxis.axis_label = 'Pixel Row Number'
    fig.xaxis.axis_label = 'Pixel Column Number'

    vlo, lo, hi, vhi = np.nanpercentile(tpf.flux - pedestal, [0.2, 1, 95, 99.8])
    vstep = (np.log10(vhi) - np.log10(vlo)) / 300.0  # assumes counts >> 1.0!
    color_mapper = LogColorMapper(palette="Viridis256", low=lo, high=hi)

    fig.image([tpf.flux[fiducial_frame, :, :] - pedestal], x=tpf.column, y=tpf.row,
              dw=tpf.shape[2], dh=tpf.shape[1], dilate=True,
              color_mapper=color_mapper, name="tpfimg")

    # The colorbar will update with the screen stretch slider
    # The colorbar margin increases as the length of the tick labels grows.
    # This colorbar share of the plot window grows, shrinking plot area.
    # This effect is known, some workarounds might work to fix the plot area:
    # https://github.com/bokeh/bokeh/issues/5186
    color_bar = ColorBar(color_mapper=color_mapper,
                         ticker=LogTicker(desired_num_ticks=8),
                         label_standoff=-10, border_line_color=None,
                         location=(0, 0), background_fill_color='whitesmoke',
                         major_label_text_align='left',
                         major_label_text_baseline='middle',
                         title='e/s', margin=0)
    fig.add_layout(color_bar, 'right')

    color_bar.formatter = PrintfTickFormatter(format="%14u")

    if tpf_source is not None:
        fig.rect('xx', 'yy', 1, 1, source=tpf_source, fill_color='gray',
                fill_alpha=0.4, line_color='white')

    # Configure the stretch slider and its callback function
    stretch_slider = RangeSlider(start=np.log10(vlo),
                                 end=np.log10(vhi),
                                 step=vstep,
                                 title='Screen Stretch (log)',
                                 value=(np.log10(lo), np.log10(hi)),
                                 orientation='horizontal',
                                 width=200,
                                 direction='ltr',
                                 show_value=True,
                                 sizing_mode='fixed',
                                 name='tpfstretch')

    def stretch_change_callback(attr, old, new):
        """TPF stretch slider callback."""
        fig.select('tpfimg')[0].glyph.color_mapper.high = 10**new[1]
        fig.select('tpfimg')[0].glyph.color_mapper.low = 10**new[0]

    stretch_slider.on_change('value', stretch_change_callback)

    return fig, stretch_slider


def make_default_export_name(tpf, suffix='custom-lc'):

0 View Source File : geoplot.py
License : MIT License
Project Creator : PatrikHlobil

def geoplot(  # noqa C901
    gdf_in,
    geometry_column="geometry",
    figure=None,
    figsize=None,
    title="",
    xlabel="Longitude",
    ylabel="Latitude",
    xlim=None,
    ylim=None,
    color="blue",
    colormap=None,
    colormap_uselog=False,
    colormap_range=None,
    category=None,
    dropdown=None,
    slider=None,
    slider_range=None,
    slider_name="",
    show_colorbar=True,
    colorbar_tick_format=None,
    xrange=None,
    yrange=None,
    hovertool=True,
    hovertool_columns=[],
    hovertool_string=None,
    simplify_shapes=None,
    tile_provider="CARTODBPOSITRON_RETINA",
    tile_provider_url=None,
    tile_attribution="",
    tile_alpha=1,
    panning=True,
    zooming=True,
    toolbar_location="right",
    show_figure=True,
    return_figure=True,
    return_html=False,
    legend=True,
    webgl=True,
    **kwargs,
):
    """Doc-String: TODO"""

    # Imports:
    import bokeh.plotting
    from bokeh.layouts import column, row
    from bokeh.models import (
        BasicTicker,
        BoxZoomTool,
        ColorBar,
        ColumnDataSource,
        GeoJSONDataSource,
        HoverTool,
        LinearColorMapper,
        LogColorMapper,
        LogTicker,
        Select,
        Slider,
        WheelZoomTool,
    )
    from bokeh.models.callbacks import CustomJS
    from bokeh.models.widgets import Dropdown
    from bokeh.palettes import all_palettes
    from bokeh.plotting import show

    # Make a copy of the input geodataframe:
    gdf = gdf_in.copy()

    # Check layertypes:
    if type(gdf) != pd.DataFrame:
        layertypes = []
        if "Point" in str(gdf.geom_type.unique()):
            layertypes.append("Point")
        if "Line" in str(gdf.geom_type.unique()):
            layertypes.append("Line")
        if "Polygon" in str(gdf.geom_type.unique()):
            layertypes.append("Polygon")
        if len(layertypes) > 1:
            raise Exception(
                f"Can only plot GeoDataFrames/Series with single type of geometry (either Point, Line or Polygon). Provided is a GeoDataFrame/Series with types: {layertypes}"
            )
    else:
        layertypes = ["Point"]

    # Get and check provided parameters for geoplot:
    figure_options = {
        "title": title,
        "x_axis_label": xlabel,
        "y_axis_label": ylabel,
        "plot_width": 600,
        "plot_height": 400,
        "toolbar_location": toolbar_location,
        "active_scroll": "wheel_zoom",
        "x_axis_type": "mercator",
        "y_axis_type": "mercator",
        "match_aspect": True,
    }
    if figsize is not None:
        width, height = figsize
        figure_options["plot_width"] = width
        figure_options["plot_height"] = height
    if webgl:
        figure_options["output_backend"] = "webgl"

    if type(gdf) != pd.DataFrame:
        # Convert GeoDataFrame to Web Mercator Projection:
        gdf.to_crs(epsg=3857, inplace=True)

        # Simplify shapes if wanted:
        if isinstance(simplify_shapes, numbers.Number):
            if layertypes[0] in ["Line", "Polygon"]:
                gdf[geometry_column] = gdf[geometry_column].simplify(simplify_shapes)
        elif simplify_shapes is not None:
            raise ValueError(
                "  <  simplify_shapes> parameter only accepts numbers or None."
            )

    # Check for category, dropdown or slider (choropleth map column):
    category_options = 0
    if category is not None:
        category_options += 1
        category_columns = [category]
    if dropdown is not None:
        category_options += 1
        category_columns = dropdown
    if slider is not None:
        category_options += 1
        category_columns = slider
    if category_options > 1:
        raise ValueError(
            "Only one of  < category>,  < dropdown> or  < slider> parameters is allowed to be used at once."
        )

    # Check for category (single choropleth plot):
    if category is None:
        pass
    elif isinstance(category, (list, tuple)):
        raise ValueError(
            "For  < category>, please provide an existing single column of the GeoDataFrame."
        )
    elif category in gdf.columns:
        pass
    else:
        raise ValueError(
            f"Could not find column '{category}' in GeoDataFrame. For  < category>, please provide an existing single column of the GeoDataFrame."
        )

    # Check for dropdown (multiple choropleth plots via dropdown selection):
    if dropdown is None:
        pass
    elif not isinstance(dropdown, (list, tuple)):
        raise ValueError(
            "For  < dropdown>, please provide a list/tuple of existing columns of the GeoDataFrame."
        )
    else:
        for col in dropdown:
            if col not in gdf.columns:
                raise ValueError(
                    f"Could not find column '{col}' for  < dropdown> in GeoDataFrame. "
                )

    # Check for slider (multiple choropleth plots via slider selection):
    if slider is None:
        pass
    elif not isinstance(slider, (list, tuple)):
        raise ValueError(
            "For  < slider>, please provide a list/tuple of existing columns of the GeoDataFrame."
        )
    else:
        for col in slider:
            if col not in gdf.columns:
                raise ValueError(
                    f"Could not find column '{col}' for  < slider> in GeoDataFrame. "
                )

        if slider_range is not None:
            if not isinstance(slider_range, Iterable):
                raise ValueError(
                    " < slider_range> has to be a type that is iterable like list, tuple, range, ..."
                )
            else:
                slider_range = list(slider_range)
                if len(slider_range) != len(slider):
                    raise ValueError(
                        "The number of elements in  < slider_range> has to be the same as in  < slider>."
                    )
                steps = []
                for i in range(len(slider_range) - 1):
                    steps.append(slider_range[i + 1] - slider_range[i])

                if len(set(steps)) > 1:
                    raise ValueError(
                        " < slider_range> has to have equal step size between each elements (like a range-object)."
                    )
                else:
                    slider_step = steps[0]
                    slider_start = slider_range[0]
                    slider_end = slider_range[-1]

    # Check colormap if either  < category>,  < dropdown> or  < slider> is choosen:
    if category_options == 1:
        if colormap is None:
            colormap = blue_colormap
        elif isinstance(colormap, (tuple, list)):
            if len(colormap) > 1:
                pass
            else:
                raise ValueError(
                    f" < colormap> only accepts a list/tuple of at least two colors or the name of one of the following predefined colormaps (see also https://bokeh.pydata.org/en/latest/docs/reference/palettes.html ): {list(all_palettes.keys())}"
                )
        elif isinstance(colormap, str):
            if colormap in all_palettes:
                colormap = all_palettes[colormap]
                colormap = colormap[max(colormap.keys())]
            else:
                raise ValueError(
                    f"Could not find  < colormap> with name {colormap}. The following predefined colormaps are supported (see also https://bokeh.pydata.org/en/latest/docs/reference/palettes.html ): {list(all_palettes.keys())}"
                )
        else:
            raise ValueError(
                f" < colormap> only accepts a list/tuple of at least two colors or the name of one of the following predefined colormaps (see also https://bokeh.pydata.org/en/latest/docs/reference/palettes.html ): {list(all_palettes.keys())}"
            )
    else:
        if isinstance(color, str):
            colormap = [color]
        elif color is None:
            colormap = ["blue"]
        else:
            raise ValueError(
                " < color> has to be a string specifying the fill_color of the map glyph."
            )

    # Check xlim & ylim:
    if xlim is not None:
        if isinstance(xlim, (tuple, list)):
            if len(xlim) == 2:
                xmin, xmax = xlim
                for _ in [xmin, xmax]:
                    if not -180  <  _  < = 180:
                        raise ValueError(
                            "Limits for x-axis (=Longitude) have to be between -180 and 180."
                        )
                if not xmin  <  xmax:
                    raise ValueError("xmin has to be smaller than xmax.")

                from pyproj import Transformer

                transformer = Transformer.from_crs("epsg:4326", "epsg:3857")
                xmin = transformer.transform(0, xmin)[0]
                xmax = transformer.transform(0, xmax)[0]
                figure_options["x_range"] = (xmin, xmax)
            else:
                raise ValueError(
                    "Limits for x-axis (=Longitude) have to be of form [xmin, xmax] with values between -180 and 180."
                )
        else:
            raise ValueError(
                "Limits for x-axis (=Longitude) have to be of form [xmin, xmax] with values between -180 and 180."
            )
    if ylim is not None:
        if isinstance(ylim, (tuple, list)):
            if len(ylim) == 2:
                ymin, ymax = ylim
                for _ in [ymin, ymax]:
                    if not -90  <  _  < = 90:
                        raise ValueError(
                            "Limits for y-axis (=Latitude) have to be between -90 and 90."
                        )
                if not ymin  <  ymax:
                    raise ValueError("ymin has to be smaller than ymax.")

                from pyproj import Transformer

                transformer = Transformer.from_crs("epsg:4326", "epsg:3857")
                ymin = transformer.transform(ymin, 0)[1]
                ymax = transformer.transform(ymax, 0)[1]
                figure_options["y_range"] = (ymin, ymax)
            else:
                raise ValueError(
                    "Limits for y-axis (=Latitude) have to be of form [ymin, ymax] with values between -90 and 90."
                )
        else:
            raise ValueError(
                "Limits for y-axis (=Latitude) have to be of form [ymin, ymax] with values between -90 and 90."
            )

    # Create Figure to draw:
    old_layout = None
    if figure is None:
        figure_options["x_axis_label"] = (
            figure_options["x_axis_label"]
            if figure_options["x_axis_label"] is not None
            else "Longitute"
        )
        figure_options["y_axis_label"] = (
            figure_options["y_axis_label"]
            if figure_options["y_axis_label"] is not None
            else "Latitude"
        )
        p = bokeh.plotting.figure(**figure_options)

        # Add Tile Source as Background:
        p = _add_backgroundtile(
            p, tile_provider, tile_provider_url, tile_attribution, tile_alpha
        )

    elif isinstance(figure, type(bokeh.plotting.figure())):
        p = figure
    elif isinstance(figure, type(column())):
        old_layout = figure
        p = _get_figure(old_layout)
    else:
        raise ValueError(
            "Parameter  < figure> has to be of type bokeh.plotting.figure or bokeh.layouts.column."
        )

    for t in p.tools:
        # Get ridd of zoom on axes:
        if isinstance(t, WheelZoomTool):
            t.zoom_on_axis = False
        # Make sure that box zoom matches aspect:
        if isinstance(t, BoxZoomTool):
            t.match_aspect = True

    # Hide legend if wanted:
    legend_input = legend
    if isinstance(legend, str):
        pass
    else:
        legend = "GeoLayer"

    # Define colormapper:
    if len(colormap) == 1:
        kwargs["fill_color"] = colormap[0]

    elif category is not None:
        # Check if category column is numerical:
        if not issubclass(gdf[category].dtype.type, np.number):
            raise NotImplementedError(
                f" < category> plot only yet implemented for numerical columns. Column '{category}' is not numerical."
            )

        field = category
        colormapper_options = {"palette": colormap}
        if colormap_range is not None:
            if not isinstance(colormap_range, (tuple, list)):
                raise ValueError(
                    " < colormap_range> can only be 'None' or a tuple/list of form (min, max)."
                )
            elif len(colormap_range) == 2:
                colormapper_options["low"] = colormap_range[0]
                colormapper_options["high"] = colormap_range[1]
        else:
            colormapper_options["low"] = gdf[field].min()
            colormapper_options["high"] = gdf[field].max()
        if colormap_uselog:
            colormapper = LogColorMapper(**colormapper_options)
        else:
            colormapper = LinearColorMapper(**colormapper_options)
        kwargs["fill_color"] = {"field": "Colormap", "transform": colormapper}
        if not isinstance(legend, str):
            legend = str(field)

    elif dropdown is not None:
        # Check if all columns in dropdown selection are numerical:
        for col in dropdown:
            if not issubclass(gdf[col].dtype.type, np.number):
                raise NotImplementedError(
                    f" < dropdown> plot only yet implemented for numerical columns. Column '{col}' is not numerical."
                )

        field = dropdown[0]
        colormapper_options = {"palette": colormap}
        if colormap_range is not None:
            if not isinstance(colormap_range, (tuple, list)):
                raise ValueError(
                    " < colormap_range> can only be 'None' or a tuple/list of form (min, max)."
                )
            elif len(colormap_range) == 2:
                colormapper_options["low"] = colormap_range[0]
                colormapper_options["high"] = colormap_range[1]
        else:
            colormapper_options["low"] = gdf[dropdown].min().min()
            colormapper_options["high"] = gdf[dropdown].max().max()
        if colormap_uselog:
            colormapper = LogColorMapper(**colormapper_options)
        else:
            colormapper = LinearColorMapper(**colormapper_options)
        kwargs["fill_color"] = {"field": "Colormap", "transform": colormapper}
        legend = " " + field

    elif slider is not None:
        # Check if all columns in dropdown selection are numerical:
        for col in slider:
            if not issubclass(gdf[col].dtype.type, np.number):
                raise NotImplementedError(
                    f" < slider> plot only yet implemented for numerical columns. Column '{col}' is not numerical."
                )

        field = slider[0]
        colormapper_options = {"palette": colormap}
        if colormap_range is not None:
            if not isinstance(colormap_range, (tuple, list)):
                raise ValueError(
                    " < colormap_range> can only be 'None' or a tuple/list of form (min, max)."
                )
            elif len(colormap_range) == 2:
                colormapper_options["low"] = colormap_range[0]
                colormapper_options["high"] = colormap_range[1]
        else:
            colormapper_options["low"] = gdf[slider].min().min()
            colormapper_options["high"] = gdf[slider].max().max()
        if colormap_uselog:
            colormapper = LogColorMapper(**colormapper_options)
        else:
            colormapper = LinearColorMapper(**colormapper_options)
        kwargs["fill_color"] = {"field": "Colormap", "transform": colormapper}
        if not isinstance(legend, str):
            legend = "Geolayer"

    # Check that only hovertool_columns or hovertool_string is used:
    if isinstance(hovertool_columns, (list, tuple, str)):
        if len(hovertool_columns) > 0 and hovertool_string is not None:
            raise ValueError(
                "Either  < hovertool_columns> or  < hovertool_string> can be used, but not both at the same time."
            )
    else:
        raise ValueError(
            " < hovertool_columns> has to be a list of columns of the GeoDataFrame or the string 'all'."
        )

    if hovertool_string is not None:
        hovertool_columns = "all"

    # Check for Hovertool columns:
    if hovertool:
        if not isinstance(hovertool_columns, (list, tuple)):
            if hovertool_columns == "all":
                hovertool_columns = list(
                    filter(lambda col: col != geometry_column, gdf.columns)
                )
            else:
                raise ValueError(
                    " < hovertool_columns> has to be a list of columns of the GeoDataFrame or the string 'all'."
                )
        elif len(hovertool_columns) == 0:
            if category is not None:
                hovertool_columns = [category]
            elif dropdown is not None:
                hovertool_columns = dropdown
            elif slider is not None:
                hovertool_columns = slider
            else:
                hovertool_columns = []
        else:
            for col in hovertool_columns:
                if col not in gdf.columns:
                    raise ValueError(
                        f"Could not find columns '{col}' in GeoDataFrame.  < hovertool_columns> has to be a list of columns of the GeoDataFrame or the string 'all'."
                    )
    else:
        if category is None:
            hovertool_columns = []
        else:
            hovertool_columns = [category]

    # Reduce DataFrame to needed columns:
    if type(gdf) == pd.DataFrame:
        gdf["Geometry"] = 0
        additional_columns = ["x", "y"]
    else:
        additional_columns = [geometry_column]
    for kwarg, value in kwargs.items():
        if isinstance(value, Hashable):
            if value in gdf.columns:
                additional_columns.append(value)
    if category_options == 0:
        gdf = gdf[list(set(hovertool_columns) | set(additional_columns))]
    else:
        gdf = gdf[
            list(
                set(hovertool_columns) | set(category_columns) | set(additional_columns)
            )
        ]
        gdf["Colormap"] = gdf[field]
        field = "Colormap"

    # Create GeoJSON DataSource for Plot:
    if type(gdf) != pd.DataFrame:
        geo_source = GeoJSONDataSource(geojson=gdf.to_json())
    else:
        geo_source = gdf

    # Draw Glyph on Figure:
    layout = None
    if "Point" in layertypes:
        if "line_color" not in kwargs:
            kwargs["line_color"] = kwargs["fill_color"]
        glyph = p.scatter(
            x="x", y="y", source=geo_source, legend_label=legend, **kwargs
        )

    if "Line" in layertypes:
        if "line_color" not in kwargs:
            kwargs["line_color"] = kwargs["fill_color"]
            del kwargs["fill_color"]
        glyph = p.multi_line(
            xs="xs", ys="ys", source=geo_source, legend_label=legend, **kwargs
        )

    if "Polygon" in layertypes:

        if "line_color" not in kwargs:
            kwargs["line_color"] = "black"

        # Creates from a geoDataFrame with Polygons and Multipolygons a Pandas DataFrame
        # with x any y columns specifying the geometry of the Polygons:
        geo_source = ColumnDataSource(
            convert_geoDataFrame_to_patches(gdf, geometry_column)
        )

        # Plot polygons:
        glyph = p.multi_polygons(
            xs="__x__", ys="__y__", source=geo_source, legend_label=legend, **kwargs
        )

    # Add hovertool:
    if hovertool and (category_options == 1 or len(hovertool_columns) > 0):
        my_hover = HoverTool(renderers=[glyph])
        if hovertool_string is None:
            my_hover.tooltips = [(str(col), "@{%s}" % col) for col in hovertool_columns]
        else:
            my_hover.tooltips = hovertool_string
        p.add_tools(my_hover)

    # Add colorbar:
    if show_colorbar and category_options == 1:
        colorbar_options = {
            "color_mapper": colormapper,
            "label_standoff": 12,
            "border_line_color": None,
            "location": (0, 0),
        }
        if colormap_uselog:
            colorbar_options["ticker"] = LogTicker()

        if colorbar_tick_format:
            colorbar_options["formatter"] = get_tick_formatter(colorbar_tick_format)

        colorbar = ColorBar(**colorbar_options)

        p.add_layout(colorbar, "right")

    # Add Dropdown Widget:
    if dropdown is not None:
        # Define Dropdown widget:
        dropdown_widget = Select(
            title="Select Choropleth Layer", options=list(zip(dropdown, dropdown))
        )

        # Define Callback for Dropdown widget:
        callback = CustomJS(
            args=dict(
                dropdown_widget=dropdown_widget,
                geo_source=geo_source,
                legend=p.legend[0].items[0],
            ),
            code="""

                //Change selection of field for Colormapper for choropleth plot:
                geo_source.data["Colormap"] = geo_source.data[dropdown_widget.value];
                geo_source.change.emit();

                //Change label of Legend:
                legend.label["value"] = " " + dropdown_widget.value;

                            """,
        )
        dropdown_widget.js_on_change("value", callback)

        # Add Dropdown widget above the plot:
        if old_layout is None:
            layout = column(dropdown_widget, p)
        else:
            layout = column(dropdown_widget, old_layout)

    # Add Slider Widget:
    if slider is not None:

        if slider_range is None:
            slider_start = 0
            slider_end = len(slider) - 1
            slider_step = 1

        value2name = ColumnDataSource(
            {
                "Values": np.arange(
                    slider_start, slider_end + slider_step, slider_step
                ),
                "Names": slider,
            }
        )

        # Define Slider widget:
        slider_widget = Slider(
            start=slider_start,
            end=slider_end,
            value=slider_start,
            step=slider_step,
            title=slider_name,
        )

        # Define Callback for Slider widget:
        callback = CustomJS(
            args=dict(
                slider_widget=slider_widget,
                geo_source=geo_source,
                value2name=value2name,
            ),
            code="""

                //Change selection of field for Colormapper for choropleth plot:
                var slider_value = slider_widget.value;
                var i;
                for(i=0; i < value2name.data["Names"].length; i++)
                    {
                    if (value2name.data["Values"][i] == slider_value)
                        {
                         var name = value2name.data["Names"][i];
                         }

                    }
                geo_source.data["Colormap"] = geo_source.data[name];
                geo_source.change.emit();

                            """,
        )
        slider_widget.js_on_change("value", callback)

        # Add Slider widget above the plot:
        if old_layout is None:
            layout = column(slider_widget, p)
        else:
            layout = column(slider_widget, old_layout)

    # Hide legend if user wants:
    if legend_input is False:
        p.legend.visible = False

    # Set click policy for legend:
    p.legend.click_policy = "hide"

    # Set panning option:
    if panning is False:
        p.toolbar.active_drag = None

    # Set zooming option:
    if zooming is False:
        p.toolbar.active_scroll = None

    # Display plot and if wanted return plot:
    if layout is None:
        if old_layout is None:
            layout = p
        else:
            layout = old_layout

    # Display plot if wanted
    if show_figure:
        show(layout)

    # Return as (embeddable) HTML if wanted:
    if return_html:
        return embedded_html(layout)

    # Return plot:
    if return_figure:
        return layout

0 View Source File : metainfo_plots.py
License : MIT License
Project Creator : skiniry

def heatplot(min_readlen, max_readlen, min_pos, max_pos, positions,readlengths,count_list,heatmap_metagene_type,title,reverse_scale,color_palette,short_code,background_col,maxscaleval,title_size, axis_label_size, subheading_size,marker_size):
	xlabs = []
	ylabs = []
	for i in range(min_readlen,max_readlen+1):
		ylabs.append(i)
	for i in range(min_pos, max_pos):
		xlabs.append(i)
	df = pd.DataFrame(np.column_stack([positions, readlengths, count_list]), columns=['positions',"readlengths","counts"])
	source = ColumnDataSource(df)

	if color_palette == "gist_rainbow":
		color_pallete_list = []
		colormap =cm.get_cmap("gist_rainbow") #choose any matplotlib colormap here
		start_val = 0.75
		for i in range(0,256):
			start_val -= 0.00293
			rgb = colormap(start_val)[:3]
			hexval = matplotlib.colors.rgb2hex(rgb)
			color_pallete_list.append(hexval)
	else:
		color_pallete_list = all_palettes[color_palette][max(all_palettes[color_palette].keys())]
	
	colormap =cm.get_cmap("gist_rainbow") #choose any matplotlib colormap here
	rgb = colormap(0.5)[:3]
	hexval = matplotlib.colors.rgb2hex(rgb)

	if reverse_scale == True:
		color_pallete_list = color_pallete_list[::-1]
	
	print (count_list)
	print (max(filter(lambda v: v is not None, count_list)))
	
	if maxscaleval == "None":
		color_mapper = LogColorMapper(palette=color_pallete_list, low=1, high=max(filter(lambda v: v is not None, count_list)),nan_color=background_col)
	else:
		color_mapper = LogColorMapper(palette=color_pallete_list, low=1, high=maxscaleval,nan_color=background_col)
	p = figure(plot_width=1300, plot_height=750,x_range=(min_pos,max_pos), y_range=(min_readlen,max_readlen),title="Heatmap ({})".format(short_code),
			   y_axis_label="Readlengths", toolbar_location="below",tools = "reset,pan,box_zoom")
	p.title.align="center"
	p.title.text_font_size = title_size
	p.xaxis.axis_label_text_font_size = axis_label_size
	p.xaxis.major_label_text_font_size = marker_size
	p.yaxis.axis_label_text_font_size = axis_label_size
	p.yaxis.major_label_text_font_size = marker_size
	p.background_fill_color = background_col
	if heatmap_metagene_type == "metagene_start":
		p.xaxis.axis_label = ('Position relative to start')
	elif heatmap_metagene_type == "metagene_stop":
		p.xaxis.axis_label = ('Position relative to stop')
	p.rect(x="positions", y="readlengths", width=1, height=1,source=source,fill_color={'field': 'counts',"transform":color_mapper},line_color=None)
	color_bar = ColorBar(color_mapper=color_mapper, ticker=LogTicker(),title="Counts", border_line_color=None, location=(0,0))
	p.add_layout(color_bar, 'right')
	output_file("scatter10k.html", title="Heatmap ({})".format(short_code))
	graph = "  <  style>.mpld3-xaxis {{font-size: {0}px;}} .mpld3-yaxis {{font-size: {0}px;}} < /style>".format(marker_size)
	graph += " < div style='padding-left: 55px;padding-top: 22px;'>  < a href='https://trips.ucc.ie/short/{0}' target='_blank' > < button class='button centerbutton' type='submit'> < b>Direct link to this plot < /b> < /button> < /a>  < /div>".format(short_code)
	graph += file_html(p,CDN)
	return graph



def ticker(tick):