numpy.random.random

Here are the examples of the python api numpy.random.random taken from open source projects. By voting up you can indicate which examples are most useful and appropriate.

200 Examples 7

Example 1

Project: chainer
Source File: test_huber_loss.py
View license
    def setUp(self):
        self.shape = (4, 10)
        self.x = (numpy.random.random(self.shape) - 0.5) * 20
        self.x = self.x.astype(numpy.float32)
        self.t = numpy.random.random(self.shape).astype(numpy.float32)
        self.gy = numpy.random.random(self.shape[0]).astype(numpy.float32)

Example 2

Project: pyscf
Source File: test_addons.py
View license
    def test_project_mo_r2r(self):
        nao = mol.nao_2c()
        c = numpy.random.random((nao*2,nao*2))
        c = c + numpy.sin(c)*1j
        c1 = scf.addons.project_mo_r2r(mol, c, mol)
        self.assertTrue(numpy.allclose(c, c1))

        numpy.random.seed(15)
        n2c = mol.nao_2c()
        n4c = n2c * 2
        mo1 = numpy.random.random((n4c,n4c)) + numpy.random.random((n4c,n4c))*1j
        mol2 = gto.Mole()
        mol2.atom = mol.atom
        mol2.basis = {'H': 'cc-pvdz', 'O': 'cc-pvdz'}
        mol2.build(False, False)
        mo2 = scf.addons.project_mo_r2r(mol, mo1, mol2)
        self.assertAlmostEqual(abs(mo2).sum(), 2159.3715489514038, 11)

Example 3

Project: tvb-framework
Source File: datatypes_factory.py
View license
    def create_ICA(self, timeseries):
        """
        :returns: persisted entity IndependentComponents
        """
        operation, _, storage_path = self.__create_operation()
        partial_ts = TimeSeries(use_storage=False)
        partial_ts.data = numpy.random.random((10, 10, 10, 10))
        partial_ica = IndependentComponents(source=partial_ts,
                                            component_time_series=numpy.random.random((10, 10, 10, 10)),
                                            prewhitening_matrix=numpy.random.random((10, 10, 10, 10)),
                                            unmixing_matrix=numpy.random.random((10, 10, 10, 10)),
                                            n_components=10, use_storage=False)
        ica = IndependentComponents(source=timeseries, n_components=10, storage_path=storage_path)
        ica.write_data_slice(partial_ica)
        adapter_instance = StoreAdapter([ica])
        OperationService().initiate_prelaunch(operation, adapter_instance, {})
        return ica

Example 4

Project: tvb-library
Source File: spectral_test.py
View license
    def test_coherencespectrum(self):
        data = numpy.random.random((10, 10))
        ts = time_series.TimeSeries(data=data)
        dt = spectral.CoherenceSpectrum(source=ts,
                                        nfft = 4,
                                        array_data = numpy.random.random((10, 10)),
                                        frequency = numpy.random.random((10,)))
        summary_info = dt.summary_info 
        self.assertEqual(summary_info['Number of frequencies'], 10)
        self.assertEqual(summary_info['Spectral type'], 'CoherenceSpectrum')
        self.assertEqual(summary_info['FFT length (time-points)'], 4)
        self.assertEqual(summary_info['Source'], '')
        self.assertEqual(dt.nfft, 4)
        self.assertEqual(dt.shape, (10, 10))
        self.assertTrue(dt.source is not None)

Example 5

Project: tvb-library
Source File: spectral_test.py
View license
    def test_complexcoherence(self):
        data = numpy.random.random((10, 10))
        ts = time_series.TimeSeries(data=data)
        dt = spectral.ComplexCoherenceSpectrum(source=ts,
                                               array_data = numpy.random.random((10, 10)),
                                               cross_spectrum = numpy.random.random((10, 10)),
                                               epoch_length = 10,
                                               segment_length = 5)
        summary_info = dt.summary_info
        self.assertEqual(summary_info['Frequency step'], 0.2)     
        self.assertEqual(summary_info['Maximum frequency'], 0.5)  
        self.assertEqual(summary_info['Source'], '')  
        self.assertEqual(summary_info['Spectral type'], 'ComplexCoherenceSpectrum')     
        self.assertTrue(dt.aggregation_functions is None)
        self.assertEqual(dt.epoch_length, 10)
        self.assertEqual(dt.segment_length, 5)
        self.assertEqual(dt.shape, (10, 10))
        self.assertTrue(dt.source is not None)
        self.assertEqual(dt.windowing_function, '')

Example 6

Project: oq-engine
Source File: scientific_test.py
View license
    def test_survival_nonzeromean(self):
        loss_ratio = numpy.random.random()
        mean = loss_ratio - numpy.random.random()

        self.assertEqual(
            0, self.distribution.survival(loss_ratio, mean, None))

        mean = loss_ratio + numpy.random.random()
        self.assertEqual(
            1, self.distribution.survival(loss_ratio, mean, None))

Example 7

Project: oq-risklib
Source File: scientific_test.py
View license
    def test_survival_nonzeromean(self):
        loss_ratio = numpy.random.random()
        mean = loss_ratio - numpy.random.random()

        self.assertEqual(
            0, self.distribution.survival(loss_ratio, mean, None))

        mean = loss_ratio + numpy.random.random()
        self.assertEqual(
            1, self.distribution.survival(loss_ratio, mean, None))

Example 8

Project: auto-sklearn
Source File: test_sgd.py
View license
    def test_target_algorithm_multioutput_multiclass_support(self):
        cls = sklearn.linear_model.SGDClassifier()
        X = np.random.random((10, 10))
        y = np.random.randint(0, 1, size=(10, 10))
        self.assertRaisesRegexp(ValueError, 'bad input shape \(10, 10\)',
                                cls.fit, X, y)

Example 9

Project: pybrain
Source File: discretesde.py
View license
    def _forwardImplementation(self, inbuf, outbuf):
        """ Activate the copied module instead of the original and
            feed it with the current state.
        """
        if random.random() < 0.001:
            outbuf[:] = array([random.randint(self.module.numActions)])
        else:
            outbuf[:] = self.explorerModule.activate(self.state)

Example 10

Project: xarray
Source File: test_backends.py
View license
    def test_unsorted_index_raises(self):
        # should be fixed in netcdf4 v1.2.1
        random_data = np.random.random(size=(4, 6))
        dim0 = [0, 1, 2, 3]
        dim1 = [0, 2, 1, 3, 5, 4]  # We will sort this in a later step
        da = xr.DataArray(data=random_data, dims=('dim0', 'dim1'),
                          coords={'dim0': dim0, 'dim1': dim1}, name='randovar')
        ds = da.to_dataset()

        with self.roundtrip(ds) as ondisk:
            inds = np.argsort(dim1)
            ds2 = ondisk.isel(dim1=inds)
            try:
                print(ds2.randovar.values)  # should raise IndexError in netCDF4
            except IndexError as err:
                self.assertIn('first by calling .load', str(err))

Example 11

Project: pymc3
Source File: test_examples.py
View license
    def setUp(self):
        # Sample size
        n = 100
        # True mean count, given occupancy
        theta = 2.1
        # True occupancy
        pi = 0.4
        # Simulate some data data
        self.y = (np.random.random(n) < pi) * np.random.poisson(lam=theta, size=n)

Example 12

Project: pyqtgraph
Source File: ViewBox.py
View license
def rand(n):
    data = np.random.random(n)
    data[int(n*0.1):int(n*0.13)] += .5
    data[int(n*0.18)] += 2
    data[int(n*0.1):int(n*0.13)] *= 5
    data[int(n*0.18)] *= 20
    return data, np.arange(n, n+len(data)) / float(n)

Example 13

Project: RLScore
Source File: test_linear.py
View license
    def setUp(self):
        #randomly generate data matrix
        self.X = np.random.random((10,50))
        #some basis vectors
        self.trainsets = [self.X, self.X.T]
        #self.basis_vectors = [0,3,7,8]
        self.bvecinds = [0,3,7,8]
        self.setParams()

Example 14

Project: mlxtend
Source File: test_checkerboard.py
View license
def test_runs():

    ary = np.random.random((6, 4))
    checkerboard_plot(ary,
                      col_labels=['abc', 'def', 'ghi', 'jkl'],
                      row_labels=['sample %d' % i for i in range(1, 6)],
                      cell_colors=['skyblue', 'whitesmoke'],
                      font_colors=['black', 'black'],
                      figsize=(5, 5))

Example 15

Project: Axelrod
Source File: test_random_.py
View license
    def test_set_seed(self):
        """Test that numpy and stdlib random seed is set by axelrod seed"""

        numpy_random_numbers = []
        stdlib_random_numbers = []
        for _ in range(2):
            seed(0)
            numpy_random_numbers.append(numpy.random.random())
            stdlib_random_numbers.append(random.random())

        self.assertEqual(numpy_random_numbers[0], numpy_random_numbers[1])
        self.assertEqual(stdlib_random_numbers[0], stdlib_random_numbers[1])

Example 16

Project: lfd
Source File: move_rope.py
View license
def color_cylinders(cyl_sim_objs):
    for sim_obj in cyl_sim_objs:
        color = np.random.random(3)
        for bt_obj in sim_obj.get_bullet_objects():
            for link in bt_obj.GetKinBody().GetLinks():
                for geom in link.GetGeometries():
                    geom.SetDiffuseColor(color)

Example 17

Project: director
Source File: startup.py
View license
    def handleStatus(self, msg):
        if msg.plan_type == msg.STANDING:
            goal = transformUtils.frameFromPositionAndRPY(
                     np.array([robotStateJointController.q[0] + 2 * self.max_distance_per_plan * (np.random.random() - 0.5),
                               robotStateJointController.q[1] + 2 * self.max_distance_per_plan * (np.random.random() - 0.5),
                               robotStateJointController.q[2] - 0.84]),
                     [0, 0, robotStateJointController.q[5] + 2 * np.degrees(np.pi) * (np.random.random() - 0.5)])
            request = footstepsDriver.constructFootstepPlanRequest(robotStateJointController.q, goal)
            request.params.max_num_steps = 18
            footstepsDriver.sendFootstepPlanRequest(request)

Example 18

Project: RocAlphaGo
Source File: test_players.py
View license
    def test_extreme_temperature_is_numerically_stable(self):
        player_low = ProbabilisticPolicyPlayer(None, temperature=1e-12)
        player_high = ProbabilisticPolicyPlayer(None, temperature=1e+12)

        distribution = np.random.random(361)
        distribution = distribution / distribution.sum()

        self.assertFalse(any(np.isnan(player_low.apply_temperature(distribution))))
        self.assertFalse(any(np.isnan(player_high.apply_temperature(distribution))))

Example 19

Project: scikit-image
Source File: test_colorconv.py
View license
def test_gray2rgb_alpha():
    x = np.random.random((5, 5, 4))
    assert_equal(gray2rgb(x, alpha=None).shape, (5, 5, 4))
    assert_equal(gray2rgb(x, alpha=False).shape, (5, 5, 3))
    assert_equal(gray2rgb(x, alpha=True).shape, (5, 5, 4))

    x = np.random.random((5, 5, 3))
    assert_equal(gray2rgb(x, alpha=None).shape, (5, 5, 3))
    assert_equal(gray2rgb(x, alpha=False).shape, (5, 5, 3))
    assert_equal(gray2rgb(x, alpha=True).shape, (5, 5, 4))

    assert_equal(gray2rgb(np.array([[1, 2], [3, 4.]]),
                          alpha=True)[0, 0, 3], 1)
    assert_equal(gray2rgb(np.array([[1, 2], [3, 4]], dtype=np.uint8),
                          alpha=True)[0, 0, 3], 255)

Example 20

View license
def test_rus_sample_wrong_X():
    """Test either if an error is raised when X is different at fitting
    and sampling"""

    # Create the object
    rus = RandomUnderSampler(random_state=RND_SEED)
    rus.fit(X, Y)
    assert_raises(RuntimeError, rus.sample, np.random.random((100, 40)),
                  np.array([0] * 50 + [1] * 50))

Example 21

Project: scipy
Source File: test_linsolve.py
View license
    def test_lu_refcount(self):
        # Test that we are keeping track of the reference count with splu.
        n = 30
        a = random.random((n, n))
        a[a < 0.95] = 0
        # Make a diagonal dominant, to make sure it is not singular
        a += 4*eye(n)
        a_ = csc_matrix(a)
        lu = splu(a_)

        # And now test that we don't have a refcount bug
        import sys
        rc = sys.getrefcount(lu)
        for attr in ('perm_r', 'perm_c'):
            perm = getattr(lu, attr)
            assert_equal(sys.getrefcount(lu), rc + 1)
            del perm
            assert_equal(sys.getrefcount(lu), rc)

Example 22

Project: iris
Source File: test_broadcast_to_shape.py
View license
    def test_masked(self):
        # masked arrays are also accepted
        a = np.random.random([2, 3])
        m = ma.array(a, mask=[[0, 1, 0], [0, 1, 1]])
        b = broadcast_to_shape(m, (5, 3, 4, 2), (3, 1))
        for i in range(5):
            for j in range(4):
                self.assertMaskedArrayEqual(b[i, :, j, :].T, m)

Example 23

Project: PoissonSamplingGenerator
Source File: poisson.py
View license
def random_point_disk(num_points = 1):
    alpha = np.random.random(num_points) * math.pi * 2.0
    radius = np.sqrt(np.random.random(num_points))
    x = np.cos(alpha) * radius
    y = np.sin(alpha) * radius
    return np.dstack((x,y))[0]

Example 24

View license
def ensure_non_zero(signal):
    # We add a little bit of static to avoid
    # 'divide by zero encountered in log'
    # during MFCC computation
    signal += np.random.random(len(signal)) * 10**-10
    return signal

Example 25

Project: control
Source File: gc.py
View license
    def gen_target(self, arm):
        """Generate a random target"""
        self.target = np.random.random(size=arm.DOF,) * \
            self.target_gain + self.target_bias

        return self.target

Example 26

Project: nupic.subutai
Source File: hotgym.py
View license
def createModel(seed=1956):
  params = model_params.MODEL_PARAMS
  params['modelParams']['spParams']['seed'] = seed

  # Randomly change encoder resolution to be in [0.78, 0.98], i.e. 0.88 +/- 0.1
  params['modelParams']['sensorParams']['encoders']['consumption'][
    'resolution'] = 0.78 + numpy.random.random()*.2

  return ModelFactory.create(model_params.MODEL_PARAMS)

Example 27

Project: properscoring
Source File: test_crps.py
View license
    def test_crps_degenerate_ensemble(self):
        x = np.random.random()
        vec = x * np.ones((10,))
        for delta in [-np.pi, 0.0, +np.pi]:
            computed = crps_ensemble(x + delta, vec)
            expected = np.abs(delta * 1.0 ** 2)
            self.assertAlmostEqual(computed, expected)

Example 28

Project: rf
Source File: test_deconvolve.py
View license
    def test_toeplitz_real_sym(self):
        # set specific seed value such that random numbers are reproducible
        seed(0)
        src = random(50) - 0.5
        rsp = random(50) - 0.5
        toep = scipy.linalg.toeplitz(src)
        x = np.dot(scipy.linalg.inv(toep), rsp)  # compare to scipy.linalg
        x2 = rf.deconvolve._toeplitz_real_sym(src, rsp)
        np.testing.assert_array_almost_equal(x, x2, decimal=3)

Example 29

Project: msaf
Source File: rnmf.py
View license
    def init_h(self):
        self.H = np.random.random((self._num_bases, self._num_samples))
        self.H[:,:] = 1.0
        # normalized bases
        Wnorm = np.sqrt(np.sum(self.W**2.0, axis=0))
        self.W /= Wnorm
        
        for i in range(self.H.shape[0]):
            self.H[i,:] *= Wnorm[i]
            
        self.update_s()

Example 30

Project: nesoni
Source File: graph_layout.py
View license
    def __init__(self, node_names, weights):
        self.names = [ ]
        self.weights = weights
        self.name_to_ident = { }
        self.links = [ ]
        for name in node_names:
            self.name_to_ident[name] = len(self.names)
            self.names.append(name)
            self.links.append([])
        
        self.positions = random.random((len(self.links),2))
        
        self.update_amount = 1.5

Example 31

Project: pyfasst
Source File: cq.py
View license
    def test_oct(self):
        for _ in xrange(100):
            sig = N.random.random(100000)
            fmin = N.random.random()*200+1
            fmax = N.random.random()*(22048-fmin)+fmin
            obins = N.random.randint(24)+1
            print fmin,fmax,obins
            scale = OctScale(fmin,fmax,obins)
            nsgt = NSGT(scale,fs=44100,Ls=len(sig))
            c = nsgt.forward(sig)
            s_r = nsgt.backward(c)
            rec_err = norm(sig-s_r)/norm(sig)
            self.assertAlmostEqual(rec_err,0)

Example 32

Project: orange
Source File: OWMDSQt.py
View license
    def randomize(self):
        if not getattr(self, "mds", None):
            return
        self.mds.points = numpy.random.random(size=[self.mds.n,2])
        if self.computeStress:
            self.mds.getStress(self.stressFunc[self.StressFunc][1])
            self.stress=self.getAvgStress(self.stressFunc[self.StressFunc][1])
        self.graph.updateData()

Example 33

Project: orange3-text
Source File: test_corpus.py
View license
    def test_extend_attributes(self):
        # corpus without features
        c = Corpus.from_file('bookexcerpts')
        X = np.random.random((len(c), 3))
        c.extend_attributes(X, ['1', '2', '3'])
        self.assertEqual(c.X.shape, (len(c), 3))

        # add to non empty corpus
        c.extend_attributes(X, ['1', '2', '3'])
        self.assertEqual(c.X.shape, (len(c), 6))

        # extend sparse
        c.extend_attributes(csr_matrix(X), ['1', '2', '3'])
        self.assertEqual(c.X.shape, (len(c), 9))
        self.assertTrue(issparse(c.X))

Example 34

Project: climin
Source File: test_util.py
View license
def test_minibatches():
    """Test if minibatches are correctly generated if given a size."""
    D = np.random.random((13, 5))
    batches = minibatches(D, batch_size=5)
    assert batches[0].shape[0] == 5
    assert batches[1].shape[0] == 5
    assert batches[2].shape[0] == 3

Example 35

Project: lda2vec
Source File: lda2vec_model.py
View license
    def __init__(self, n_documents=100, n_document_topics=10,
                 n_units=256, n_vocab=1000, dropout_ratio=0.5, train=True,
                 counts=None, n_samples=15, word_dropout_ratio=0.0,
                 power=0.75, temperature=1.0):
        em = EmbedMixture(n_documents, n_document_topics, n_units,
                          dropout_ratio=dropout_ratio, temperature=temperature)
        kwargs = {}
        kwargs['mixture'] = em
        kwargs['sampler'] = L.NegativeSampling(n_units, counts, n_samples,
                                               power=power)
        super(LDA2Vec, self).__init__(**kwargs)
        rand = np.random.random(self.sampler.W.data.shape)
        self.sampler.W.data[:, :] = rand[:, :]
        self.n_units = n_units
        self.train = train
        self.dropout_ratio = dropout_ratio
        self.word_dropout_ratio = word_dropout_ratio
        self.n_samples = n_samples

Example 36

Project: cesium
Source File: test_datasets.py
View license
    def read(self):
        out_buffer = StringIO()
        fname = os.path.basename(self.url)
        prefix = fname[0]
        if fname.endswith('.dat'):
            header = 'filename,class,meta1\n{}001,{},1.0\n'.format(prefix, prefix)
            out_buffer.write(header.encode('utf-8'))
        else:
            X = np.random.random((10, self.num_columns))
            text = '\n'.join(','.join(row) for row in X.astype('str'))
            if fname.endswith('.zip'):
                with ZipFile(out_buffer, 'w') as z:
                    z.writestr('{}001.txt'.format(prefix), text)
            elif fname.endswith('.tar.gz'):
                with tarfile.open(fileobj=out_buffer, mode='w:gz') as t:
                    tarinfo = tarfile.TarInfo('{}001.txt'.format(prefix))
                    tarinfo.size = len(text)
                    t.addfile(tarinfo, StringIO(text.encode('utf-8')))
        return out_buffer.getvalue()

Example 37

Project: chemlab
Source File: test_graphics.py
View license
def test_point_fog():
    '''To see if we're able to render a triangle'''

    NPOINTS = 10000
    vertices = (np.random.random((NPOINTS, 3))-0.5)*3
    colors = [colors.blue] * NPOINTS

    v = QtViewer()

    tr = v.add_renderer(PointRenderer, vertices, colors)
    v.run()

Example 38

Project: pymote
Source File: channeltype.py
View license
    def in_comm_range(self, network, node1, node2):
        p1 = network.pos[node1]
        p2 = network.pos[node2]
        d = sqrt(sum(pow(p1 - p2, 2)))
        if random() > d ** 2 / node1.commRange ** 2:
            if (self.environment.are_visible(p1, p2)):
                assert node1.commRange == node2.commRange
                return True
        return False

Example 39

Project: cachey
Source File: test_nbytes.py
View license
    def test_pandas():
        x = np.random.random(1000)
        i = np.random.random(1000)
        s = pd.Series(x, index=i)
        assert nbytes(s) == nbytes(x) + nbytes(i)

        df = pd.DataFrame(s)
        assert nbytes(df) == nbytes(s)

        s = pd.Series(pd.Categorical(['a', 'b'] * 1000))
        assert nbytes(s.cat.codes) < nbytes(s) < nbytes(s.cat.codes) * 2

Example 40

Project: dask
Source File: test_slicing.py
View license
@pytest.mark.parametrize('shape', [(2,), (2, 3), (2, 3, 5)])
@pytest.mark.parametrize('slice', [(Ellipsis,),
                                   (None, Ellipsis),
                                   (Ellipsis, None),
                                   (None, Ellipsis, None)])
def test_slicing_with_Nones(shape, slice):
    x = np.random.random(shape)
    d = da.from_array(x, chunks=shape)

    assert_eq(x[slice], d[slice])

Example 41

Project: spark-sklearn
Source File: test_keyed_models.py
View license
    def test_classification_predictor(self):
        minExamples = 2
        featureGen = lambda: np.random.random(KeyedModelTests.NDIM)
        # Need to ensure each user has at least one of each label to train on.
        cyc = cycle([-1, 1])
        labelGen = lambda: next(cyc)
        lr = LogisticRegression(random_state=0)
        self.checkKeyedModelEquivalent(minExamples, featureGen, labelGen,
                                       sklearnEstimator=lr, yCol="y")

Example 42

Project: pypcd
Source File: test_pypcd.py
View license
def test_add_fields(pcd_fname):
    import pypcd
    pc = pypcd.PointCloud.from_path(pcd_fname)

    old_md = pc.get_metadata()
    # new_dt = [(f, pc.pc_data.dtype[f]) for f in pc.pc_data.dtype.fields]
    # new_data = [pc.pc_data[n] for n in pc.pc_data.dtype.names]
    md = {'fields': ['bla', 'bar'], 'count': [1, 1], 'size': [4, 4],
          'type': ['F', 'F']}
    d = np.rec.fromarrays((np.random.random(len(pc.pc_data)),
                           np.random.random(len(pc.pc_data))))
    newpc = pypcd.add_fields(pc, md, d)

    new_md = newpc.get_metadata()
    # print len(old_md['fields']), len(md['fields']), len(new_md['fields'])
    # print old_md['fields'], md['fields'], new_md['fields']
    assert(len(old_md['fields'])+len(md['fields']) == len(new_md['fields']))

Example 43

Project: dit
Source File: base_markov_optimizer.py
View license
    def construct_random_initial(self):
        """
        Construct a random optimization vector.

        Returns
        -------
        x : ndarray
            An optimization vector.
        """
        # make cdists like p(x_i | w)
        cdists = [ np.random.random(size=shape) for shape in self._shapes ]

        for cdist, axes in zip(cdists, self._idxs):
            self.row_normalize(cdist, axes)

        # smash them together
        x = np.concatenate([ cdist.flatten() for cdist in cdists ], axis=0)

        return x

Example 44

Project: nolearn
Source File: test_base.py
View license
    def test_reproducable(self, TrainSplit, nn):
        X, y = np.random.random((100, 10)), np.repeat([0, 1, 2, 3], 25)
        X_train1, X_valid1, y_train1, y_valid1 = TrainSplit(0.2)(
            X, y, nn)
        X_train2, X_valid2, y_train2, y_valid2 = TrainSplit(0.2)(
            X, y, nn)
        assert np.all(X_train1 == X_train2)
        assert np.all(y_valid1 == y_valid2)

Example 45

Project: distarray
Source File: test_distributed_io.py
View license
    def test_save_3d(self):
        shape = (4, 5, 3)
        expected = np.random.random(shape)

        dist = {0: 'b', 1: 'c', 2: 'n'}
        distribution = Distribution(self.context, shape, dist=dist)
        da = self.context.fromarray(expected, distribution=distribution)

        self.context.save_hdf5(self.output_path, da, mode='w')
        file_check = self.context.apply(check_hdf5_file,
                                        (self.output_path, expected),
                                        targets=[self.context.targets[0]])[0]
        self.assertTrue(file_check)

Example 46

Project: distributions
Source File: stats.py
View license
def sample_discrete(distn,size=[],dtype=np.int32):
    'samples from a one-dimensional finite pmf'
    distn = np.atleast_1d(distn)
    assert (distn >=0).all() and distn.ndim == 1
    if (0 == distn).all():
        return np.random.randint(distn.shape[0],size=size)
    cumvals = np.cumsum(distn)
    return np.sum(np.array(random(size))[...,na] * cumvals[-1] > cumvals, axis=-1,dtype=dtype)

Example 47

Project: karta
Source File: gpx_tests.py
View license
    def test_add_track(self):
        track = Multipoint([(np.random.random(), np.random.random())
                      for i in range(10)], properties={"name":"segment0"})
        g = vector.gpx.GPX()
        g.add_track(track)
        expected = self.Track([self.Trkseg(
                        [self.Point(tuple(xy), {}, {}) for xy in track.vertices],
                        {"name":"segment0"}, {})], {}, {})
        self.assertEqual(g.tracks[0], expected)
        return

Example 48

Project: oq-hazardlib
Source File: utils_test.py
View license
    def test_projecting_back_and_forth(self):
        lon0, lat0 = -10.4, 20.3
        proj = utils.get_orthographic_projection(lon0, lat0, lon0, lat0)
        lons = lon0 + (numpy.random.random((20, 10)) * 50 - 25)
        lats = lat0 + (numpy.random.random((20, 10)) * 50 - 25)
        xx, yy = proj(lons, lats, reverse=False)
        self.assertEqual(xx.shape, (20, 10))
        self.assertEqual(yy.shape, (20, 10))
        blons, blats = proj(xx, yy, reverse=True)
        self.assertTrue(numpy.allclose(blons, lons))
        self.assertTrue(numpy.allclose(blats, lats))

Example 49

Project: gwpy
Source File: test_timeseries.py
View license
    def create(self):
        out = self.TEST_CLASS()
        for epoch in [0, 100, 400]:
            data = (numpy.random.random(100) * 1e5).astype(float)
            out.append(out.EntryClass(data, epoch=epoch, sample_rate=1))
        return out

Example 50

Project: thedoctor
Source File: test_validators.py
View license
def test_broadcastable():
    data = {'a': np.random.random((2, 1)),
            'b': np.random.random((3, 1)),
            'c': 3}
    func = broadcastable('a', 'b')
    assert raises(ValidationError, func, data)
    func = broadcastable('a', 'c')
    func(data)